BPA; An Endocrine Disruptor Induced Biochemical Changes and Histopathological Damage in the Kidneys of Rats (Rattus Norvegicus)

Main Article Content

Naila Hameed
Tasleem Akhtar
Nadeem Sheikh


Background: Xenoestrogens are chemical compounds that are similar to estrogen in effect but not in structure. Bisphenol A is an endocrine disruptor, that mimics the action of endogenous estrogen and activates the estrogen receptor. It is produced in large volumes and incorporated in many plastic industries worldwide. BPA is extensively used in food and beverages. The ubiquitous and extensive use of BPA containing products results in high human exposure, and its effects on the human body are of great concern. The aim of the present study was to evaluate the effects of BPA on biochemical and histopathological parameters of the kidney.

Material and Methods: Forty adult male rats were assigned into five groups of eight rats each. One group was served as a control and other groups were treated with BPA. Rats were administered orally with different doses of BPA 10mg/Kg and 25mg/Kg for 6 and 12 weeks, respectively. All doses of BPA were dissolved in corn oil and orally administered to rats. After 6 and 12 weeks, blood and kidney samples were collected for evaluation of biochemical parameters and histopathological analyses.

Results: Serum levels of urea and creatinine were significantly increased, and uric acid levels in serum were increased but not significantly. The biochemical parameters variations were confirmed by histopathological investigations. BPA induced toxicity may lead to harmful health effects.

Conclusion: Results showed that the oral administration of BPA significantly affects biochemical parameters and renal tissue architecture.

Article Details

How to Cite
Hameed, N., Akhtar, T., & Sheikh, N. (2023). BPA; An Endocrine Disruptor Induced Biochemical Changes and Histopathological Damage in the Kidneys of Rats (Rattus Norvegicus). Albus Scientia, 2023(1), 1–5. https://doi.org/10.56512/AS.2023.1.e230628


Ahmed, W. M. S., Moselhy, W. A. & Nabil, T. M. (2015). Bisphenol A toxicity in adult male rats: hematological, biochemical and histopathological approach. Global Veterinaria,14(2): 228-238. https://doi.org/10.5829/idosi.gv.2015.1402.9332

Bindhumol, V., Chitra, K. C., & Mathur, P. P. (2003). Bisphenol A induces reactive oxygen species generation in the liver of male rats. Toxicology, 188(2-3), 117–124. https://doi.org/10.1016/s0300-483x(03)00056-8 DOI: https://doi.org/10.1016/S0300-483X(03)00056-8

Bosch, R. J., Quiroga, B., Muñoz-Moreno, C., Olea-Herrero, N., Arenas, M. I., González-Santander, M., Reventún, P., Zaragoza, C., de Arriba, G., & Saura, M. (2016). Bisphenol A: An environmental factor implicated in renal vascular damage. Nefrologia, 36(1), 5–9. https://doi.org/10.1016/j.nefro.2015.08.007 DOI: https://doi.org/10.1016/j.nefroe.2016.01.009

Canbek, M., Ustuuml, M. C., Kabay, S., Uysal, O., Ozden, H., Sentuuml, H., Ozbayar, C., Ustuuml, D. & Degirmenci, I. (2011). The effect of gallic acid on kidney and liver after experimental renal ischemia/reperfusion injury in the rats. African Journal of. Pharmacy and Pharmacology, 5(8): 1027-1033.

Dekant, W., & Völkel, W. (2008). Human exposure to bisphenol A by biomonitoring: methods, results and assessment of environmental exposures. Toxicology and Applied Pharmacology, 228(1), 114–134. https://doi.org/10.1016/j.taap.2007.12.008 DOI: https://doi.org/10.1016/j.taap.2007.12.008

Edres, H.A., Taha, N.M., Mandour, A.E.-W. & Lebda, M.A., (2018). Impact of L-Carnitine on Bisphenol A-Induced Kidney Damage in Rats. Alexandria Journal of Veterinary Sciences, 56(1): 11-17. https://doi.org/10.5455/ajvs.283744 DOI: https://doi.org/10.5455/ajvs.283744

González-Parra, E., Herrero, J. A., Elewa, U., Bosch, R. J., Arduán, A. O., & Egido, J. (2013). Bisphenol a in chronic kidney disease. International Journal of Nephrology, 2013, 437857. https://doi.org/10.1155/2013/437857 DOI: https://doi.org/10.1155/2013/437857

Hassan, A. H., Ismail, A. A., & Khudir, A. N. (2013). Effects of pre-and postnatal exposure to Bisphenol-A on the reproductive efficacy in male albino rats. Journal of Kerbala University, 11(3): 158-172.

Kabuto, H., Hasuike, S., Minagawa, N., & Shishibori, T. (2003). Effects of bisphenol A on the metabolisms of active oxygen species in mouse tissues. Environmental Research, 93(1), 31–35. https://doi.org/10.1016/s0013-9351(03)00062-8 DOI: https://doi.org/10.1016/S0013-9351(03)00062-8

Kang, J. H., Kito, K., & Kondo, F. (2003). Factors influencing the migration of bisphenol A from cans. Journal of Food Protection, 66(8), 1444–1447. https://doi.org/10.4315/0362-028x-66.8.1444 DOI: https://doi.org/10.4315/0362-028X-66.8.1444

Khan, M. R., Ouladsmane, M., Alammari, A. M., & Azam, M. (2021). Bisphenol A leaches from packaging to fruit juice commercially available in markets. Food packaging and shelf life, 28, 100678. https://doi.org/10.1016/j.fpsl.2021.100678 DOI: https://doi.org/10.1016/j.fpsl.2021.100678

Koch, H. M., & Calafat, A. M. (2009). Human body burdens of chemicals used in plastic manufacture. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 364(1526), 2063–2078. https://doi.org/10.1098/rstb.2008.0208 DOI: https://doi.org/10.1098/rstb.2008.0208

Krishnan, A. V., Stathis, P., Permuth, S. F., Tokes, L., & Feldman, D. (1993). Bisphenol-A: an estrogenic substance is released from polycarbonate flasks during autoclaving. Endocrinology, 132(6), 2279–2286. https://doi.org/10.1210/endo.132.6.8504731 DOI: https://doi.org/10.1210/endo.132.6.8504731

Morgan, A. M., El-Ballal, S. S., El-Bialy, B. E., & El-Borai, N. B. (2014). Studies on the potential protective effect of cinnamon against bisphenol A- and octylphenol-induced oxidative stress in male albino rats. Toxicology reports, 1, 92–101. https://doi.org/10.1016/j.toxrep.2014.04.003 DOI: https://doi.org/10.1016/j.toxrep.2014.04.003

Murmu, S. & Shrivastava, V.K. (2014). Role of Vitamin C as antidote against Bisphenol A toxicity in kidney of freshwater fish Cirrhinus mrigala (Ham). International Journal of Environmental Sciences, 6: 499-503. DOI: https://doi.org/10.21608/eajbsz.2014.13497

Nakagawa, Y., & Tayama, S. (2000). Metabolism and cytotoxicity of bisphenol A and other bisphenols in isolated rat hepatocytes. Archives of Toxicology, 74(2), 99–105. https://doi.org/10.1007/s002040050659 DOI: https://doi.org/10.1007/s002040050659

Ola-Davies, E.O., Olukole, S.G. & Lanipekun, D.O., (2018). Gallic Acid Ameliorates Bisphenol A-Induced Toxicity in Wistar Rats. Iranian Journal of Toxicology, 12(4): 11-18. DOI: https://doi.org/10.32598/IJT.12.4.519.1

Pal, S., Sarkar, K., Nath, P. P., Mondal, M., Khatun, A., & Paul, G. (2017). Bisphenol S impairs blood functions and induces cardiovascular risks in rats. Toxicology Reports, 4, 560–565. https://doi.org/10.1016/j.toxrep.2017.10.006 DOI: https://doi.org/10.1016/j.toxrep.2017.10.006

Rahimi, O., Farokhi, F., Khojasteh, S.M.B. & Ozi, S.A. 2015. The effect of Bisphenol A on serum parameters and morphology of kidney's tissue. Biological Forum, 7(2): 79-90. DOI: https://doi.org/10.1080/00131725.2015.972824

Ribeiro, E., Ladeira, C., & Viegas, S. (2017). Occupational Exposure to Bisphenol A (BPA): A Reality That Still Needs to Be Unveiled. Toxics, 5(3), 22. https://doi.org/10.3390/toxics5030022 DOI: https://doi.org/10.3390/toxics5030022

Rubin B. S. (2011). Bisphenol A: an endocrine disruptor with widespread exposure and multiple effects. The Journal of Steroid Biochemistry and Molecular Biology, 127(1-2), 27–34. https://doi.org/10.1016/j.jsbmb.2011.05.002 DOI: https://doi.org/10.1016/j.jsbmb.2011.05.002

Tzatzarakis, M. N., Vakonaki, E., Kavvalakis, M. P., Barmpas, M., Kokkinakis, E. N., Xenos, K., & Tsatsakis, A. M. (2015). Biomonitoring of bisphenol A in hair of Greek population. Chemosphere, 118, 336–341. https://doi.org/10.1016/j.chemosphere.2014.10.044 DOI: https://doi.org/10.1016/j.chemosphere.2014.10.044

Yıldız, N., & Barlas, N. (2013). Hepatic and renal functions in growing male rats after bisphenol A and octylphenol exposure. Human & Experimental Toxicology, 32(7), 675–686. https://doi.org/10.1177/0960327112464796 DOI: https://doi.org/10.1177/0960327112464796

Zahra, A., Kerslake, R., Kyrou, I., Randeva, H. S., Sisu, C., & Karteris, E. (2022). Impact of Environmentally Relevant Concentrations of Bisphenol A (BPA) on the Gene Expression Profile in an In Vitro Model of the Normal Human Ovary. International Journal of Molecular Sciences, 23(10), 5334. https://doi.org/10.3390/ijms23105334 DOI: https://doi.org/10.3390/ijms23105334