Determining the Reliability of Commoner Purification Methods and Mono-culturing Techniques for Microalgae

Main Article Content

Sanaullah Sattar
Muhammad Arshad
Muhammad Muneeb
Zahira Saleem
Nimra Shamas
Muhammad Amir
Abid Farid Tabassam
Muhammad Arshad
Attia Tahir

Abstract

Background: The reliability of the purification process and monoculture technique for microalgae was investigated in this study. The study involves the isolation of microalgae from the environment of different localities to get the axenic culture of microalgae and test the reliability of other commonly used techniques. The vast usage of microalgae in industry and for the welfare of mankind demands the mono and pure culture of microalgae. Contaminants in the growth medium can alter the products which causes significant losses.


Materials and Methods: Morphological study of any strain highly demands pure culture, so different techniques are being used, but only some techniques are reliable.


Results: From the investigation, not a single technique is present which is entirely reliable, as contaminants are freely present in the universe so there are great chances of contamination.


Conclusion: Comparatively single cell picking and dilution to extinction are effective methods for investigation purposes. These techniques are more reliable when combined with other techniques, for example, the addition of antibiotics or the use of ultraviolet radiation and washing methods compositely used with the above-mentioned techniques gave fruitful and reliable results.

Article Details

How to Cite
Sattar, S., Arshad, M., Muneeb, M., Saleem, Z., Shamas, N., Amir, M., Farid Tabassam, A., Arshad, M., & Tahir, A. (2024). Determining the Reliability of Commoner Purification Methods and Mono-culturing Techniques for Microalgae. Albus Scientia, 2024(2), 1–7. https://doi.org/10.56512/AS.2024.2.e241219
Section
Articles

References

Andersen, R. A., & Kawachi, M. (2005). Traditional Microalgae Isolation Techniques. Algal Culturing Techniques. https://doi.org/10.1016/b978-012088426-1/50007-x DOI: https://doi.org/10.1016/B978-012088426-1/50007-X

ASTM. (2000). D1889-00 Standard Test Method for Turbidity of Water. Annual Book of ASTM Standards, 11.01.

Barros, A. C., Gonçalves, A. L., & Simões, M. (2019). Microalgal/cyanobacterial biofilm formation on selected surfaces: the effects of surface physicochemical properties and culture media composition. Journal of Applied Phycology, 31(1). https://doi.org/10.1007/s10811-018-1582-3 DOI: https://doi.org/10.1007/s10811-018-1582-3

B-Béres, V., Stenger-Kovács, C., Buczkó, K., Padisák, J., Selmeczy, G. B., Lengyel, E., & Tapolczai, K. (2023). Ecosystem services provided by freshwater and marine diatoms. Hydrobiologia, 850(12–13). https://doi.org/10.1007/s10750-022-04984-9 DOI: https://doi.org/10.1007/s10750-022-04984-9

Bhat, R. A., Singh, D. V., Tonelli, F. M. P., & Hakeem, K. R. (2022). Plant and Algae Biomass. Plant and Algae Biomass. https://doi.org/10.1007/978-3-030-94074-4 DOI: https://doi.org/10.1007/978-3-030-94074-4

Bott, N. J., Ophel-Keller, K. M., Sierp, M. T., Herdina, Rowling, K. P., Mckay, A. C., Loo, M. G. K., Tanner, J. E., & Deveney, M. R. (2010). Toward routine, DNA-based detection methods for marine pests. Biotechnology Advances, 28(6). https://doi.org/10.1016/j.biotechadv.2010.05.018 DOI: https://doi.org/10.1016/j.biotechadv.2010.05.018

Demirbas, A. (2010). Use of algae as biofuel sources. Energy Conversion and Management, 51(12). https://doi.org/10.1016/j.enconman.2010.06.010 DOI: https://doi.org/10.1016/j.enconman.2010.06.010

Droop, M. R. (1967). A procedure for routine purification of algal cultures with antibiotics. British Phycological Bulletin, 3(2). https://doi.org/10.1080/00071616700650171 DOI: https://doi.org/10.1080/00071616700650171

Fernandez-Valenzuela, S., Chávez-Ruvalcaba, F., Beltran-Rocha, J. C., San Claudio, P. M., & Reyna-Martínez, R. (2021). Isolation and Culturing Axenic Microalgae: Mini–Review. The Open Microbiology Journal, 15(1). https://doi.org/10.2174/1874285802115010111 DOI: https://doi.org/10.2174/1874285802115010111

Foo, S. C., Mok, C. Y., Ho, S. Y., & Khong, N. M. H. (2023). Microalgal culture preservation: Progress, trends and future developments. Algal Research, 71. https://doi.org/10.1016/j.algal.2023.103007 DOI: https://doi.org/10.1016/j.algal.2023.103007

Gabed, N., Verret, F., Peticca, A., Kryvoruchko, I., Gastineau, R., Bosson, O., Séveno, J., Davidovich, O., Davidovich, N., Witkowski, A., Kristoffersen, J. B., Benali, A., Ioannou, E., Koutsaviti, A., Roussis, V., Gâteau, H., Phimmaha, S., Leignel, V., Badawi, M., … Mouget, J. L. (2022). What Was Old Is New Again: The Pennate Diatom Haslea ostrearia (Gaillon) Simonsen in the Multi-Omic Age. Marine Drugs, 20(4). https://doi.org/10.3390/md20040234 DOI: https://doi.org/10.3390/md20040234

Gasulla, F., Guéra, A., & Barreno, E. (2010). A simple and rapid method for isolating lichen photobionts. Symbiosis, 51(2). https://doi.org/10.1007/s13199-010-0064-4 DOI: https://doi.org/10.1007/s13199-010-0064-4

Guillard, R. R. L. (2005). Purification Methods for Microalgae. Algal Culturing Techniques. https://doi.org/10.1016/b978-012088426-1/50009-3 DOI: https://doi.org/10.1016/B978-012088426-1/50009-3

Hossain, N., & Mahlia, T. M. I. (2019). Progress in physicochemical parameters of microalgae cultivation for biofuel production. Critical Reviews in Biotechnology, 39(6). https://doi.org/10.1080/07388551.2019.1624945 DOI: https://doi.org/10.1080/07388551.2019.1624945

Huang, C., Zhang, H., Han, S. I., & Han, A. (2021). Cell Washing and Solution Exchange in Droplet Microfluidic Systems. Analytical Chemistry, 93(24). https://doi.org/10.1021/acs.analchem.1c01558 DOI: https://doi.org/10.1021/acs.analchem.1c01558

Ilavarasi, A., Mubarakali, D., Praveenkumar, R., Baldev, E., & Thajuddin, N. (2011). Optimization of various growth media to freshwater microalgae for biomass production. Biotechnology, 10(6). https://doi.org/10.3923/biotech.2011.540.545 DOI: https://doi.org/10.3923/biotech.2011.540.545

Keeling, P. J. (2004). Diversity and evolutionary history of plastids and their hosts. American Journal of Botany, 91, (10). https://doi.org/10.3732/ajb.91.10.1481 DOI: https://doi.org/10.3732/ajb.91.10.1481

Kudela, R. M., Howard, M. D. A., Jenkins, B. D., Miller, P. E., & Smith, G. J. (2010). Using the molecular toolbox to compare harmful algal blooms in upwelling systems. Progress in Oceanography, 85(1–2). https://doi.org/10.1016/j.pocean.2010.02.007 DOI: https://doi.org/10.1016/j.pocean.2010.02.007

Larkum, A. W. D., Grossman, A. R., & Raven, J. A. (2020). Correction to: Photosynthesis in Algae: Biochemical and Physiological Mechanisms. https://doi.org/10.1007/978-3-030-33397-3_18 DOI: https://doi.org/10.1007/978-3-030-33397-3_18

Lee, T. C. H., Chan, P. L., Tam, N. F. Y., Xu, S. J. L., & Lee, F. W. F. (2021). Establish axenic cultures of armored and unarmored marine dinoflagellate species using density separation, antibacterial treatments and stepwise dilution selection. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-020-80638-x DOI: https://doi.org/10.1038/s41598-020-80638-x

Leng, L., Wei, L., Xiong, Q., Xu, S., Li, W., Lv, S., Lu, Q., Wan, L., Wen, Z., & Zhou, W. (2020). Use of microalgae-based technology for the removal of antibiotics from wastewater: A review. Chemosphere, 238. https://doi.org/10.1016/j.chemosphere.2019.124680 DOI: https://doi.org/10.1016/j.chemosphere.2019.124680

Li, C., Tian, Q., Zhang, Y., Li, Y., Yang, X., Zheng, H., Chen, L., & Li, F. (2022). Sequential combination of photocatalysis and microalgae technology for promoting the degradation and detoxification of typical antibiotics. Water Research, 210. https://doi.org/10.1016/j.watres.2021.117985 DOI: https://doi.org/10.1016/j.watres.2021.117985

Li, Y., Horsman, M., Wang, B., Wu, N., & Lan, C. Q. (2008). Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Applied Microbiology and Biotechnology, 81(4). https://doi.org/10.1007/s00253-008-1681-1 DOI: https://doi.org/10.1007/s00253-008-1681-1

Li, Y., Horsman, M., Wu, N., Lan, C. Q., & Dubois-calero, N. (2008). Biofuels from microalgae. Biotechnology Prog, 24(1). DOI: https://doi.org/10.1021/bp070371k

MacKeigan, P. W., Garner, R. E., Monchamp, M. È., Walsh, D. A., Onana, V. E., Kraemer, S. A., Pick, F. R., Beisner, B. E., Agbeti, M. D., da Costa, N. B., Shapiro, B. J., & Gregory-Eaves, I. (2022). Comparing microscopy and DNA metabarcoding techniques for identifying cyanobacteria assemblages across hundreds of lakes. Harmful Algae, 113. https://doi.org/10.1016/j.hal.2022.102187 DOI: https://doi.org/10.1016/j.hal.2022.102187

Mantzorou, A., & Ververidis, F. (2019). Microalgal biofilms: A further step over current microalgal cultivation techniques. Science of the Total Environment, 651. https://doi.org/10.1016/j.scitotenv.2018.09.355 DOI: https://doi.org/10.1016/j.scitotenv.2018.09.355

Medlin, L. K., & Kooistra, W. H. C. F. (2010). Methods to estimate the diversity in the marine photosynthetic protist community with illustrations from case studies: A review. Diversity, 2(7). https://doi.org/10.3390/d2070973 DOI: https://doi.org/10.3390/d2070973

Mutanda, T., Ramesh, D., Karthikeyan, S., Kumari, S., Anandraj, A., & Bux, F. (2011). Bioprospecting for hyper-lipid producing microalgal strains for sustainable biofuel production. Bioresource Technology, 102(1), 57–70. https://doi.org/10.1016/J.BIORTECH.2010.06.077 DOI: https://doi.org/10.1016/j.biortech.2010.06.077

Not, F., Gausling, R., Azam, F., Heidelberg, J. F., & Worden, A. Z. (2007). Vertical distribution of picoeukaryotic diversity in the Sargasso Sea. Environmental Microbiology, 9(5). https://doi.org/10.1111/j.1462-2920.2007.01247.x DOI: https://doi.org/10.1111/j.1462-2920.2007.01247.x

Parvin, M., Zannat, M. N., & Habib, M. A. B. (2007). Two Important Techniques for Isolation of Microalgae. Asian Fisheries Science, 20(1). https://doi.org/10.33997/j.afs.2007.20.1.010 DOI: https://doi.org/10.33997/j.afs.2007.20.1.010

Piredda, R., Sarno, D., Lange, C. B., Tomasino, M. P., Zingone, A., & Montresor, M. (2017). Diatom Resting Stages in Surface Sediments: A Pilot Study Comparing Next Generation Sequencing and Serial Dilution Cultures. Cryptogamie, Algologie, 38(1). https://doi.org/10.7872/crya/v38.iss1.2017.31 DOI: https://doi.org/10.7872/crya/v38.iss1.2017.31

Pokorny, L., Hausmann, B., Pjevac, P., & Schagerl, M. (2022). How to Verify Non-Presence—The Challenge of Axenic Algae Cultivation. Cells, 11(16). https://doi.org/10.3390/cells11162594 DOI: https://doi.org/10.3390/cells11162594

Sato, N. (2020). Endosymbiotic theories of organelles revisited: Retrospects and prospects. Endosymbiotic Theories of Organelles Revisited: Retrospects and Prospects. https://doi.org/10.1007/978-981-15-1161-5 DOI: https://doi.org/10.1007/978-981-15-1161-5

Saxena, A., Tiwari, A., Kaushik, R., Iqbal, H. M. N., & Parra-Saldívar, R. (2021). Diatoms recovery from wastewater: Overview from an ecological and economic perspective. Journal of Water Process Engineering, 39. https://doi.org/10.1016/j.jwpe.2020.101705 DOI: https://doi.org/10.1016/j.jwpe.2020.101705

Schmid, A. M. M. (2003a). Endobacteria in the diatom Pinnularia (Bacillariophyceae). I. “Scattered ct-nucleoids” explained: DAPI-DNA complexes stem from exoplastidial bacteria boring into the chloroplasts. Journal of Phycology, 39(1). https://doi.org/10.1046/j.1529-8817.2003.02084.x DOI: https://doi.org/10.1046/j.1529-8817.2003.02084.x

Schmid, A. M. M. (2003b). Endobacteria in the diatom Pinnularia (Bacillariophyceae). II. Host cell cycle-dependent translocation and transient chloroplast scars. Journal of Phycology, 39(1). https://doi.org/10.1046/j.1529-8817.2003.02085.x DOI: https://doi.org/10.1046/j.1529-8817.2003.02085.x

Sena, L., Rojas, D., Montiel, E., González, H., Moret, J., & Naranjo, L. (2011). A strategy to obtain axenic cultures of Arthrospira spp. cyanobacteria. World Journal of Microbiology and Biotechnology, 27(5). https://doi.org/10.1007/s11274-010-0549-6 DOI: https://doi.org/10.1007/s11274-010-0549-6

Vu, C. H. T., Lee, H. G., Chang, Y. K., & Oh, H. M. (2018). Axenic cultures for microalgal biotechnology: Establishment, assessment, maintenance, and applications. Biotechnology Advances, 36(2). https://doi.org/10.1016/j.biotechadv.2017.12.018 DOI: https://doi.org/10.1016/j.biotechadv.2017.12.018

Wang, C. Y., Fu, C. C., & Liu, Y. C. (2007). Effects of using light-emitting diodes on the cultivation of Spirulina platensis. Biochemical Engineering Journal, 37(1). https://doi.org/10.1016/j.bej.2007.03.004 DOI: https://doi.org/10.1016/j.bej.2007.03.004

Wang, Z., Hu, Y., Zhang, S., & Sun, Y. (2022). Artificial photosynthesis systems for solar energy conversion and storage: platforms and their realities. Chemical Society Reviews, 51(15). https://doi.org/10.1039/d1cs01008e DOI: https://doi.org/10.1039/D1CS01008E

Weiskirchen, S., Schröder, S. K., Buhl, E. M., & Weiskirchen, R. (2023). A Beginner’s Guide to Cell Culture: Practical Advice for Preventing Needless Problems. Cells, 12(5). https://doi.org/10.3390/cells12050682 DOI: https://doi.org/10.3390/cells12050682

Xie, Y., Khoo, K. S., Chew, K. W., Devadas, V. V., Phang, S. J., Lim, H. R., Rajendran, S., & Show, P. L. (2022). Advancement of renewable energy technologies via artificial and microalgae photosynthesis. Bioresource Technology, 363. https://doi.org/10.1016/j.biortech.2022.127830 DOI: https://doi.org/10.1016/j.biortech.2022.127830

Xiong, W., Peng, Y., Ma, W., Xu, X., Zhao, Y., Wu, J., & Tang, R. (2023). Microalgae-material hybrid for enhanced photosynthetic energy conversion: a promising path towards carbon neutrality. National Science Review, 10(10). https://doi.org/10.1093/nsr/nwad200 DOI: https://doi.org/10.1093/nsr/nwad200

Xu, D., Kong, H., Yang, E. J., Wang, Y., Li, X., Sun, P., Jiao, N., Lee, Y., Jung, J., & Cho, K. H. (2022). Spatial dynamics of active microeukaryotes along a latitudinal gradient: Diversity, assembly process, and co-occurrence relationships. Environmental Research, 212. https://doi.org/10.1016/j.envres.2022.113234 DOI: https://doi.org/10.1016/j.envres.2022.113234