CYP17A1 Network Analysis in Ovarian Serous Cystadenocarcinoma for Retrieval of Polycystic ovaries Targets

Main Article Content

Zafar Abbas Shah
Asima Tayyab

Abstract

Background/Aims: CYP17A1 is great metabolic switch for androgen overproduction which is hallmark of polycystic ovary syndrome (PCOS)initiation and progression. There is an urgent need to determine CYP17A1 mediated set of metabolic therapeutic targets for PCOS to control androgen synthesis with wide range of molecular options.


Methodology: We apply rational in silico approach for determination of PCOS comprehensive set of drug targets. First, we retrieve CYP17A1 network dataset from STRING database (https://string-db.org/) by querying CYP17A1 name that gives us updated 30 nodes containing network with unique options of enrichment analysis and module extraction. The enrichment analysis determines CYP17A1 network involvement in steroidogenesis process with carcinogenesis and drug metabolism. We select ovarian serous cystadenocarcinoma dataset from cBioPortal server (https://www.cbioportal.org/) for CYP17A1 network differential analysis.


Results: In this study, several steroid synthesis pathway members showed overexpression including SRD5A1, AKR1C3, CYP11B1, CYP11B2, CYP7A1, AKR1C1, AKR1D1, CYP7B1, CYP21A2, POR and HSD17B8 and are ideal biomarkers that provide cell cycle energy requirements for ovarian carcinoma. Few anti-androgenic members such as HSD17B2, STS, SULT2B1 and CYB5A showed down regulation that predicts the impact of hyper androgenemia on carcinogenesis. Drug metabolism components also showed up regulation which can be potential biomarkers for drug resistance in chemotherapies.


Conclusion: Our work suggests androgen and its synthesis pathway paramount in tumorigenesis and is an excellent therapeutic target in ovarian carcinoma. In future, validation of CYP17A1 network as a signature in both ovarian serous cystadenocarcinoma and PCOS dataset may lead to novel shared therapeutic combinations and tremendous syndrome-syndrome molecular linkage for personalized medicine.

Article Details

How to Cite
Shah, Z. A., & Tayyab, A. (2024). CYP17A1 Network Analysis in Ovarian Serous Cystadenocarcinoma for Retrieval of Polycystic ovaries Targets. Albus Scientia, 2024(1), 1–7. https://doi.org/10.56512/AS.2024.1.e240522
Section
Articles

References

Al Alawi, A. M., Nordenström, A., & Falhammar, H. (2019). Clinical perspectives in congenital adrenal hyperplasia due to 3β-hydroxysteroid dehydrogenase type 2 deficiency. Endocrine, 63(3), 407–421. https://doi.org/10.1007/s12020-018-01835-3 DOI: https://doi.org/10.1007/s12020-018-01835-3

Alvarez-Madrazo, S., MacKenzie, S. M., Davies, E., Fraser, R., Lee, W. K., Brown, M., Caulfield, M. J., Dominiczak, A. F., Farrall, M., Lathrop, M., Hedner, T., Melander, O., Munroe, P. B., Samani, N., Stewart, P. M., Wahlstrand, B., Webster, J., Palmer, C. N., Padmanabhan, S., & Connell, J. M. (2013,). Common polymorphisms in the CYP11B1 and CYP11B2 Genes: Evidence for a digenic influence on hypertension. Hypertension, 61(1), 232–239. https://doi.org/10.1161/hypertensionaha.112.200741 DOI: https://doi.org/10.1161/HYPERTENSIONAHA.112.200741

Ashraf, S., Nabi, M., Rasool, S. U. A., Rashid, F., & Amin, S. (2019). Hyperandrogenism in polycystic ovarian syndrome and role of CYP gene variants: A review. Egyptian Journal of Medical Human Genetics, 20(1). https://doi.org/10.1186/s43042-019-0031-4 DOI: https://doi.org/10.1186/s43042-019-0031-4

Azziz, R., Carmina, E., Chen, Z., Dunaif, A., Laven, J. S. E., Legro, R. S., Lizneva, D., Natterson-Horowtiz, B., Teede, H. J., & Yildiz, B. O. (2016). Polycystic ovary syndrome. Nature Reviews Disease Primers, 2(1). https://doi.org/10.1038/nrdp.2016.57 DOI: https://doi.org/10.1038/nrdp.2016.57

Batista, R. L., & Mendonca, B. B. (2020). Integrative and Analytical Review of the 5-Alpha-Reductase Type 2 Deficiency Worldwide. The Application of Clinical Genetics, 13, 83–96. https://doi.org/10.2147/tacg.s198178 DOI: https://doi.org/10.2147/TACG.S198178

Bulsara, J., Patel, P., Soni, A., & Acharya, S. (2021). A review: Brief insight into polycystic ovarian syndrome. Endocrine and Metabolic Science, 3, 100085. https://doi.org/10.1016/j.endmts.2021.100085 DOI: https://doi.org/10.1016/j.endmts.2021.100085

Celik, E., Turkcuoglu, I., Ata, B., Karaer, A., Kirici, P., Eraslan, S., Taskapan, C., & Berker, B. (2016). Metabolic and carbohydrate characteristics of different phenotypes of polycystic ovary syndrome. Journal of the Turkish German Gynecological Association, 17(4), 201–208. https://doi.org/10.5152/jtgga.2016.16133 DOI: https://doi.org/10.5152/jtgga.2016.16133

Chen, W., Zhou, H., Ye, L., & Zhan, B. (2016). Overexpression of SULT2B1b promotes angiogenesis in human gastric cancer. Cellular Physiology and Biochemistry, 38(3), 1040–1054. https://doi.org/10.1159/000443055 DOI: https://doi.org/10.1159/000443055

Dadachanji, R., Shaikh, N., & Mukherjee, S. (2018). Genetic variants associated with hyperandrogenemia in PCOS Pathophysiology. Genetics Research International, 2018, 1–12. https://doi.org/10.1155/2018/7624932 DOI: https://doi.org/10.1155/2018/7624932

Doty, S. L., James, C. A., Moore, A. L., Vajzovic, A., Singleton, G. L., Ma, C., Khan, Z., Xin, G., Kang, J. W., Park, J. Y., Meilan, R., Strauss, S. H., Wilkerson, J., Farin, F., & Strand, S. E. (2007). Enhanced phytoremediation of volatile environmental pollutants with transgenic trees. Proceedings of the National Academy of Sciences, 104(43), 16816–16821. https://doi.org/10.1073/pnas.0703276104 DOI: https://doi.org/10.1073/pnas.0703276104

Draper, N., Walker, E. A., Bujalska, I. J., Tomlinson, J. W., Chalder, S. M., Arlt, W., Lavery, G. G., Bedendo, O., Ray, D. W., Laing, I., Malunowicz, E., White, P. C., Hewison, M., Mason, P. J., Connell, J. M., Shackleton, C. H. L., & Stewart, P. M. (2003). Mutations in the genes encoding 11β-hydroxysteroid dehydrogenase type 1 and hexose-6-phosphate dehydrogenase interact to cause cortisone reductase deficiency. Nature Genetics, 34(4), 434–439. https://doi.org/10.1038/ng1214 DOI: https://doi.org/10.1038/ng1214

Dulos, J., Verbraak, E., Bagchus, W. M., Boots, A. M. H., & Kaptein, A. (2004). Severity of murine collagen‐induced arthritis correlates with increased CYP7B activity: Enhancement of dehydroepiandrosterone metabolism by interleukin‐1β. Arthritis & Rheumatism, 50(10), 3346–3353. https://doi.org/10.1002/art.20509 DOI: https://doi.org/10.1002/art.20509

Gingras, S., Côté, S., & Simard, J. (2001). Multiple signal transduction pathways mediate interleukin-4-induced 3β-hydroxysteroid dehydrogenase/Δ5–Δ4 isomerase in normal and tumoral target tissues. The Journal of Steroid Biochemistry and Molecular Biology, 76(1–5), 213–225. https://doi.org/10.1016/s0960-0760(00)00148-5 DOI: https://doi.org/10.1016/S0960-0760(00)00148-5

Goodarzi, M. O., Carmina, E., & Azziz, R. (2015). DHEA, DHEAS and PCOS. The Journal of Steroid Biochemistry and Molecular Biology, 145, 213–225. https://doi.org/10.1016/j.jsbmb.2014.06.003 DOI: https://doi.org/10.1016/j.jsbmb.2014.06.003

Gunning, M. N., & Fauser, B. C. J. M. (2017). Are women with polycystic ovary syndrome at increased cardiovascular disease risk later in life? Climacteric, 20(3), 222–227. https://doi.org/10.1080/13697137.2017.1316256 DOI: https://doi.org/10.1080/13697137.2017.1316256

Heidarzadehpilehrood, R., Pirhoushiaran, M., Abdollahzadeh, R., Binti Osman, M., Sakinah, M., Nordin, N., & Abdul Hamid, H. (2022). A review on CYP11A1, CYP17A1, and CYP19A1 polymorphism studies: candidate susceptibility genes for polycystic ovary syndrome (PCOS) and infertility. Genes, 13(2), 302. https://doi.org/10.3390/genes13020302 DOI: https://doi.org/10.3390/genes13020302

Hu, Y., Wan, P., An, X., & Jiang, G. (2021). Impact of dehydroepiandrosterone (DHEA) supplementation on testosterone concentrations and BMI in elderly women: A meta-analysis of randomized controlled trials. Complementary Therapies in Medicine, 56, 102620. https://doi.org/10.1016/j.ctim.2020.102620 DOI: https://doi.org/10.1016/j.ctim.2020.102620

Katyare, S., Modi, H., & Patel, M. (2006). Dehydroepiandrosterone treatment alters lipid/phospholipid profiles of rat brain and liver mitochondria. Current Neurovascular Research, 3(4), 273–279. https://doi.org/10.2174/156720206778792885 DOI: https://doi.org/10.2174/156720206778792885

Keen-Kim, D., Redman, J. B., Alanes, R. U., Eachus, M. M., Wilson, R. C., New, M. I., Nakamoto, J. M., & Fenwick, R. G. (2005). Validation and clinical application of a locus-specific polymerase chain reaction- and minisequencing-based assay for congenital adrenal hyperplasia (21-Hydroxylase Deficiency). The Journal of Molecular Diagnostics, 7(2), 236–246. https://doi.org/10.1016/s1525-1578(10)60550-8 DOI: https://doi.org/10.1016/S1525-1578(10)60550-8

Kim, S. B., Hill, M., Kwak, Y. T., Hampl, R., Jo, D. H., & Morfin, R. (2003). Neurosteroids: Cerebrospinal fluid levels for Alzheimer’s disease and Vascular Dementia diagnostics. The Journal of Clinical Endocrinology & Metabolism, 88(11), 5199–5206. https://doi.org/10.1210/jc.2003-030646 DOI: https://doi.org/10.1210/jc.2003-030646

Kitam, V. O., Maksymchuk, O. V., & Chashchyn, M. O. (2012). The possible mechanisms of CYP2E1 interactions with HSP90 and the influence of ethanol on them. BMC Structural Biology, 12(1), 33. https://doi.org/10.1186/1472-6807-12-33 DOI: https://doi.org/10.1186/1472-6807-12-33

Koide, C. L., Collier, A. C., Berry, M. J., & Panee, J. (2011). The effect of bamboo extract on hepatic biotransforming enzymes – Findings from an obese–diabetic mouse model. Journal of Ethnopharmacology, 133(1), 37–45. https://doi.org/10.1016/j.jep.2010.08.062 DOI: https://doi.org/10.1016/j.jep.2010.08.062

Kousal, B., Honzík, T., Hansíková, H., Ondrušková, N., Čechová, A., Tesařová, M., Stránecký, V., Meliška, M., Michaelides, M., & Lišková, P. (2019). Review of SRD5A3 disease-causing sequence variants and ocular findings in steroid 5α-Reductase Type 3 congenital disorder of glycosylation, and a detailed new case. Folia Biologica, 65(3), 134–141. https://doi.org/10.14712/fb2019065030134 DOI: https://doi.org/10.14712/fb2019065030134

Kuban, W., & Daniel, W. A. (2020). Cytochrome P450 expression and regulation in the brain. Drug Metabolism Reviews, 53(1), 1–29. https://doi.org/10.1080/03602532.2020.1858856 DOI: https://doi.org/10.1080/03602532.2020.1858856

Laing, N., Kraus, S. M., Shaboodien, G., & Ntusi, N. A. B. (2019). An overview of the genetic basis of cardiovascular disease. South African Medical Journal, 109(6), 364. https://doi.org/10.7196/samj.2019.v109i6.14069 DOI: https://doi.org/10.7196/SAMJ.2019.v109i6.14069

Lao, Q., & Merke, D. P. (2021). Molecular genetic testing of congenital adrenal hyperplasia due to 21-hydroxylase deficiency should include CAH-X chimeras. European Journal of Human Genetics, 29(7), 1047–1048. https://doi.org/10.1038/s41431-021-00870-5 DOI: https://doi.org/10.1038/s41431-021-00870-5

Lizneva, D., Suturina, L., Walker, W., Brakta, S., Gavrilova-Jordan, L., & Azziz, R. (2016). Criteria, prevalence, and phenotypes of polycystic ovary syndrome. Fertility and Sterility, 106(1), 6–15. https://doi.org/10.1016/j.fertnstert.2016.05.003 DOI: https://doi.org/10.1016/j.fertnstert.2016.05.003

Louwers, Y. V., de Jong, F. H., van Herwaarden, N. A. A., Stolk, L., Fauser, B. C. J. M., Uitterlinden, A. G., & Laven, J. S. E. (2013). Variants in SULT2A1 affect the DHEA sulphate to DHEA ratio in patients with polycystic ovary syndrome but not the hyperandrogenic phenotype. The Journal of Clinical Endocrinology & Metabolism, 98(9), 3848–3855. https://doi.org/10.1210/jc.2013-1976 DOI: https://doi.org/10.1210/jc.2013-1976

McGee, E. A., & Hsueh, A. J. W. (2000). Initial and cyclic recruitment of ovarian follicles. Endocrine Reviews, 21(2), 200–214. https://doi.org/10.1210/edrv.21.2.0394 DOI: https://doi.org/10.1210/edrv.21.2.0394

Miller, W. L. (2017). Steroidogenesis: Unanswered questions. Trends in Endocrinology & Metabolism, 28(11), 771–793. https://doi.org/10.1016/j.tem.2017.09.002 DOI: https://doi.org/10.1016/j.tem.2017.09.002

Miller, W. L., & Auchus, R. J. (2011, February 1). The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocrine Reviews, 32(1), 81–151. https://doi.org/10.1210/er.2010-0013 DOI: https://doi.org/10.1210/er.2010-0013

Moghetti, P., Tosi, F., Bonin, C., Di Sarra, D., Fiers, T., Kaufman, J. M., Giagulli, V. A., Signori, C., Zambotti, F., Dall’Alda, M., Spiazzi, G., Zanolin, M. E., & Bonora, E. (2013). Divergences in insulin resistance between the different phenotypes of the polycystic ovary syndrome. The Journal of Clinical Endocrinology & Metabolism, 98(4), E628–E637. https://doi.org/10.1210/jc.2012-3908 DOI: https://doi.org/10.1210/jc.2012-3908

Mueller, J. W., Gilligan, L. C., Idkowiak, J., Arlt, W., & Foster, P. A. (2015). The regulation of steroid action by sulfation and desulfation. Endocrine Reviews, 36(5), 526–563. https://doi.org/10.1210/er.2015-1036 DOI: https://doi.org/10.1210/er.2015-1036

Nelson, E. R., Wardell, S. E., Jasper, J. S., Park, S., Suchindran, S., Howe, M. K., Carver, N. J., Pillai, R. V., Sullivan, P. M., Sondhi, V., Umetani, M., Geradts, J., & McDonnell, D. P. (2013). 27-Hydroxycholesterol links hypercholesterolemia and breast cancer pathophysiology. Science, 342(6162), 1094–1098. https://doi.org/10.1126/science.1241908 DOI: https://doi.org/10.1126/science.1241908

Pallan, P. S., Wang, C., Lei, L., Yoshimoto, F. K., Auchus, R. J., Waterman, M. R., Guengerich, F. P., & Egli, M. (2015). Human cytochrome P450 21A2, the major steroid 21-hydroxylase. Journal of Biological Chemistry, 290(21), 13128–13143. https://doi.org/10.1074/jbc.m115.646307 DOI: https://doi.org/10.1074/jbc.M115.646307

Pandey, A. V., & Flück, C. E. (2013). NADPH P450 oxidoreductase: structure, function, and pathology of diseases. Pharmacology & Therapeutics, 138(2), 229–254. https://doi.org/10.1016/j.pharmthera.2013.01.010 DOI: https://doi.org/10.1016/j.pharmthera.2013.01.010

Penning, T. M. (2014). Human aldo-keto reductases and the metabolic activation of polycyclic aromatic hydrocarbons. Chemical Research in Toxicology, 27(11), 1901–1917. https://doi.org/10.1021/tx500298n DOI: https://doi.org/10.1021/tx500298n

Rainey, W. E., Rehman, K. S., & Carr, B. R. (2004). The human fetal adrenal: making adrenal androgens for placental estrogens. Seminars in Reproductive Medicine, 22(04), 327–336. https://doi.org/10.1055/s-2004-861549 DOI: https://doi.org/10.1055/s-2004-861549

Rasmussen, M., Ekstrand, B., & Zamaratskaia, G. (2013). Regulation of 3β-hydroxysteroid dehydrogenase/Δ5-Δ4 isomerase: A review. International Journal of Molecular Sciences, 14(9), 17926–17942. https://doi.org/10.3390/ijms140917926 DOI: https://doi.org/10.3390/ijms140917926

Rižner, T. L. (2016). The important roles of steroid sulfatase and sulfotransferases in gynecological diseases. Frontiers in Pharmacology, 7. https://doi.org/10.3389/fphar.2016.00030 DOI: https://doi.org/10.3389/fphar.2016.00030

Rosenfield, R. L., & Ehrmann, D. A. (2016). The pathogenesis of polycystic ovary syndrome (PCOS): the hypothesis of PCOS as functional ovarian hyperandrogenism revisited. Endocrine Reviews, 37(5), 467–520. https://doi.org/10.1210/er.2015-1104 DOI: https://doi.org/10.1210/er.2015-1104

Sacco, J. C., Abouraya, M., Motsinger-Reif, A., Yale, S. H., McCarty, C. A., & Trepanier, L. A. (2012). Evaluation of polymorphisms in the sulfonamide detoxification genes NAT2, CYB5A, and CYB5R3 in patients with sulfonamide hypersensitivity. Pharmacogenetics and Genomics, 22(10), 733–740. https://doi.org/10.1097/fpc.0b013e328357a735 DOI: https://doi.org/10.1097/FPC.0b013e328357a735

Saha, S., Dey, S., & Nath, S. (2021). Steroid hormone receptors: links with cell cycle machinery and breast cancer progression. Frontiers in Oncology, 11. https://doi.org/10.3389/fonc.2021.620214 DOI: https://doi.org/10.3389/fonc.2021.620214

Simard, J., Ricketts, M. L., Gingras, S., Soucy, P., Feltus, F. A., & Melner, M. H. (2005). Molecular biology of the 3β-hydroxysteroid dehydrogenase/Δ5-Δ4 isomerase gene family. Endocrine Reviews, 26(4), 525–582. https://doi.org/10.1210/er.2002-0050 DOI: https://doi.org/10.1210/er.2002-0050

Taneja, S. S. (2017). Re: HSD3B1 and resistance to androgen-deprivation therapy in prostate cancer: A retrospective, multicohort study. Journal of Urology, 197(1), 150–150. https://doi.org/10.1016/j.juro.2016.10.045 DOI: https://doi.org/10.1016/j.juro.2016.10.045

Tian, Y., Zhao, L., Zhang, H., Liu, X., Zhao, L., Zhao, X., Li, Y., & Li, J. (2014). AKR1C3 overexpression may serve as a promising biomarker for prostate cancer progression. Diagnostic Pathology, 9(1). https://doi.org/10.1186/1746-1596-9-42 DOI: https://doi.org/10.1186/1746-1596-9-42

Tosi, F., Negri, C., Brun, E., Castello, R., Faccini, G., Bonora, E., Muggeo, M., Toscano, V., & Moghetti, P. (2011). Insulin enhances ACTH-stimulated androgen and glucocorticoid metabolism in hyperandrogenic women. European Journal of Endocrinology, 164(2), 197–203. https://doi.org/10.1530/eje-10-0782 DOI: https://doi.org/10.1530/EJE-10-0782

Vaidya, A., & Carey, R. M. (2020). Evolution of the primary aldosteronism syndrome: Updating the approach. The Journal of Clinical Endocrinology & Metabolism, 105(12), 3771–3783. https://doi.org/10.1210/clinem/dgaa606 DOI: https://doi.org/10.1210/clinem/dgaa606

Valente, C., Alvarez, L., Marks, S. J., Lopez-Parra, A. M., Parson, W., Oosthuizen, O., Oosthuizen, E., Amorim, A., Capelli, C., Arroyo-Pardo, E., Gusmão, L., & Prata, M. J. (2015). Exploring the relationship between lifestyles, diets and genetic adaptations in humans. BMC Genetics, 16(1). https://doi.org/10.1186/s12863-015-0212-1 DOI: https://doi.org/10.1186/s12863-015-0212-1

Villar, J., Celay, J., Alonso, M. M., Rotinen, M., de Miguel, C., Migliaccio, M., & Encío, I. (2007). Transcriptional regulation of the human type 8 17β-hydroxysteroid dehydrogenase gene by C/EBPβ. The Journal of Steroid Biochemistry and Molecular Biology, 105(1–5), 131–139. https://doi.org/10.1016/j.jsbmb.2006.12.106 DOI: https://doi.org/10.1016/j.jsbmb.2006.12.106

Wang, C. T., Li, C. F., Wu, W. J., Huang, C. N., Li, C. C., Li, W. M., Chan, T. C., Liang, P. I., Hsing, C. H., & Liao, K. M. (2016). High Expression of 17β-hydroxysteroid Dehydrogenase Type 2 is Associated with a Better Prognosis in Urothelial Carcinoma of the Urinary Tract. Journal of Cancer, 7(15), 2221–2230. https://doi.org/10.7150/jca.16777 DOI: https://doi.org/10.7150/jca.16777

Wu, Q., Ishikawa, T., Sirianni, R., Tang, H., McDonald, J., Yuhanna, I., Thompson, B., Girard, L., Mineo, C., Brekken, R., Umetani, M., Euhus, D., Xie, Y., & Shaul, P. (2013). 27-Hydroxycholesterol promotes cell-autonomous, ER-positive breast cancer growth. Cell Reports, 5(3), 637–645. https://doi.org/10.1016/j.celrep.2013.10.006 DOI: https://doi.org/10.1016/j.celrep.2013.10.006

Xiao, Q., Wang, L., Supekar, S., Shen, T., Liu, H., Ye, F., Huang, J., Fan, H., Wei, Z., & Zhang, C. (2020). Structure of human steroid 5α-reductase 2 with the anti-androgen drug finasteride. Nature Communications, 11(1). https://doi.org/10.1038/s41467-020-19249-z DOI: https://doi.org/10.1038/s41467-020-19249-z

Zhang, X., Peng, Y., Zhao, J., Li, Q., Yu, X., Acevedo-Rocha, C. G., & Li, A. (2020). Bacterial cytochrome P450-catalyzed regio- and stereoselective steroid hydroxylation enabled by directed evolution and rational design. Bioresources and Bioprocessing, 7(1). https://doi.org/10.1186/s40643-019-0290-4 DOI: https://doi.org/10.1186/s40643-019-0290-4