CYP17A1 Network Analysis in Ovarian Serous Cystadenocarcinoma for Retrieval of Polycystic ovaries Targets

Main Article Content

Zafar Abbas Shah
Asima Tayyab


Background/Aims: CYP17A1 is great metabolic switch for androgen overproduction which is hallmark of polycystic ovary syndrome (PCOS)initiation and progression. There is an urgent need to determine CYP17A1 mediated set of metabolic therapeutic targets for PCOS to control androgen synthesis with wide range of molecular options.

Methodology: We apply rational in silico approach for determination of PCOS comprehensive set of drug targets. First, we retrieve CYP17A1 network dataset from STRING database ( by querying CYP17A1 name that gives us updated 30 nodes containing network with unique options of enrichment analysis and module extraction. The enrichment analysis determines CYP17A1 network involvement in steroidogenesis process with carcinogenesis and drug metabolism. We select ovarian serous cystadenocarcinoma dataset from cBioPortal server ( for CYP17A1 network differential analysis.

Results: In this study, several steroid synthesis pathway members showed overexpression including SRD5A1, AKR1C3, CYP11B1, CYP11B2, CYP7A1, AKR1C1, AKR1D1, CYP7B1, CYP21A2, POR and HSD17B8 and are ideal biomarkers that provide cell cycle energy requirements for ovarian carcinoma. Few anti-androgenic members such as HSD17B2, STS, SULT2B1 and CYB5A showed down regulation that predicts the impact of hyper androgenemia on carcinogenesis. Drug metabolism components also showed up regulation which can be potential biomarkers for drug resistance in chemotherapies.

Conclusion: Our work suggests androgen and its synthesis pathway paramount in tumorigenesis and is an excellent therapeutic target in ovarian carcinoma. In future, validation of CYP17A1 network as a signature in both ovarian serous cystadenocarcinoma and PCOS dataset may lead to novel shared therapeutic combinations and tremendous syndrome-syndrome molecular linkage for personalized medicine.

Article Details

How to Cite
Shah, Z. A., & Tayyab, A. (2024). CYP17A1 Network Analysis in Ovarian Serous Cystadenocarcinoma for Retrieval of Polycystic ovaries Targets. Albus Scientia, 2024(1), 1–7.


Al Alawi, A. M., Nordenström, A., & Falhammar, H. (2019). Clinical perspectives in congenital adrenal hyperplasia due to 3β-hydroxysteroid dehydrogenase type 2 deficiency. Endocrine, 63(3), 407–421. DOI:

Alvarez-Madrazo, S., MacKenzie, S. M., Davies, E., Fraser, R., Lee, W. K., Brown, M., Caulfield, M. J., Dominiczak, A. F., Farrall, M., Lathrop, M., Hedner, T., Melander, O., Munroe, P. B., Samani, N., Stewart, P. M., Wahlstrand, B., Webster, J., Palmer, C. N., Padmanabhan, S., & Connell, J. M. (2013,). Common polymorphisms in the CYP11B1 and CYP11B2 Genes: Evidence for a digenic influence on hypertension. Hypertension, 61(1), 232–239. DOI:

Ashraf, S., Nabi, M., Rasool, S. U. A., Rashid, F., & Amin, S. (2019). Hyperandrogenism in polycystic ovarian syndrome and role of CYP gene variants: A review. Egyptian Journal of Medical Human Genetics, 20(1). DOI:

Azziz, R., Carmina, E., Chen, Z., Dunaif, A., Laven, J. S. E., Legro, R. S., Lizneva, D., Natterson-Horowtiz, B., Teede, H. J., & Yildiz, B. O. (2016). Polycystic ovary syndrome. Nature Reviews Disease Primers, 2(1). DOI:

Batista, R. L., & Mendonca, B. B. (2020). Integrative and Analytical Review of the 5-Alpha-Reductase Type 2 Deficiency Worldwide. The Application of Clinical Genetics, 13, 83–96. DOI:

Bulsara, J., Patel, P., Soni, A., & Acharya, S. (2021). A review: Brief insight into polycystic ovarian syndrome. Endocrine and Metabolic Science, 3, 100085. DOI:

Celik, E., Turkcuoglu, I., Ata, B., Karaer, A., Kirici, P., Eraslan, S., Taskapan, C., & Berker, B. (2016). Metabolic and carbohydrate characteristics of different phenotypes of polycystic ovary syndrome. Journal of the Turkish German Gynecological Association, 17(4), 201–208. DOI:

Chen, W., Zhou, H., Ye, L., & Zhan, B. (2016). Overexpression of SULT2B1b promotes angiogenesis in human gastric cancer. Cellular Physiology and Biochemistry, 38(3), 1040–1054. DOI:

Dadachanji, R., Shaikh, N., & Mukherjee, S. (2018). Genetic variants associated with hyperandrogenemia in PCOS Pathophysiology. Genetics Research International, 2018, 1–12. DOI:

Doty, S. L., James, C. A., Moore, A. L., Vajzovic, A., Singleton, G. L., Ma, C., Khan, Z., Xin, G., Kang, J. W., Park, J. Y., Meilan, R., Strauss, S. H., Wilkerson, J., Farin, F., & Strand, S. E. (2007). Enhanced phytoremediation of volatile environmental pollutants with transgenic trees. Proceedings of the National Academy of Sciences, 104(43), 16816–16821. DOI:

Draper, N., Walker, E. A., Bujalska, I. J., Tomlinson, J. W., Chalder, S. M., Arlt, W., Lavery, G. G., Bedendo, O., Ray, D. W., Laing, I., Malunowicz, E., White, P. C., Hewison, M., Mason, P. J., Connell, J. M., Shackleton, C. H. L., & Stewart, P. M. (2003). Mutations in the genes encoding 11β-hydroxysteroid dehydrogenase type 1 and hexose-6-phosphate dehydrogenase interact to cause cortisone reductase deficiency. Nature Genetics, 34(4), 434–439. DOI:

Dulos, J., Verbraak, E., Bagchus, W. M., Boots, A. M. H., & Kaptein, A. (2004). Severity of murine collagen‐induced arthritis correlates with increased CYP7B activity: Enhancement of dehydroepiandrosterone metabolism by interleukin‐1β. Arthritis & Rheumatism, 50(10), 3346–3353. DOI:

Gingras, S., Côté, S., & Simard, J. (2001). Multiple signal transduction pathways mediate interleukin-4-induced 3β-hydroxysteroid dehydrogenase/Δ5–Δ4 isomerase in normal and tumoral target tissues. The Journal of Steroid Biochemistry and Molecular Biology, 76(1–5), 213–225. DOI:

Goodarzi, M. O., Carmina, E., & Azziz, R. (2015). DHEA, DHEAS and PCOS. The Journal of Steroid Biochemistry and Molecular Biology, 145, 213–225. DOI:

Gunning, M. N., & Fauser, B. C. J. M. (2017). Are women with polycystic ovary syndrome at increased cardiovascular disease risk later in life? Climacteric, 20(3), 222–227. DOI:

Heidarzadehpilehrood, R., Pirhoushiaran, M., Abdollahzadeh, R., Binti Osman, M., Sakinah, M., Nordin, N., & Abdul Hamid, H. (2022). A review on CYP11A1, CYP17A1, and CYP19A1 polymorphism studies: candidate susceptibility genes for polycystic ovary syndrome (PCOS) and infertility. Genes, 13(2), 302. DOI:

Hu, Y., Wan, P., An, X., & Jiang, G. (2021). Impact of dehydroepiandrosterone (DHEA) supplementation on testosterone concentrations and BMI in elderly women: A meta-analysis of randomized controlled trials. Complementary Therapies in Medicine, 56, 102620. DOI:

Katyare, S., Modi, H., & Patel, M. (2006). Dehydroepiandrosterone treatment alters lipid/phospholipid profiles of rat brain and liver mitochondria. Current Neurovascular Research, 3(4), 273–279. DOI:

Keen-Kim, D., Redman, J. B., Alanes, R. U., Eachus, M. M., Wilson, R. C., New, M. I., Nakamoto, J. M., & Fenwick, R. G. (2005). Validation and clinical application of a locus-specific polymerase chain reaction- and minisequencing-based assay for congenital adrenal hyperplasia (21-Hydroxylase Deficiency). The Journal of Molecular Diagnostics, 7(2), 236–246. DOI:

Kim, S. B., Hill, M., Kwak, Y. T., Hampl, R., Jo, D. H., & Morfin, R. (2003). Neurosteroids: Cerebrospinal fluid levels for Alzheimer’s disease and Vascular Dementia diagnostics. The Journal of Clinical Endocrinology & Metabolism, 88(11), 5199–5206. DOI:

Kitam, V. O., Maksymchuk, O. V., & Chashchyn, M. O. (2012). The possible mechanisms of CYP2E1 interactions with HSP90 and the influence of ethanol on them. BMC Structural Biology, 12(1), 33. DOI:

Koide, C. L., Collier, A. C., Berry, M. J., & Panee, J. (2011). The effect of bamboo extract on hepatic biotransforming enzymes – Findings from an obese–diabetic mouse model. Journal of Ethnopharmacology, 133(1), 37–45. DOI:

Kousal, B., Honzík, T., Hansíková, H., Ondrušková, N., Čechová, A., Tesařová, M., Stránecký, V., Meliška, M., Michaelides, M., & Lišková, P. (2019). Review of SRD5A3 disease-causing sequence variants and ocular findings in steroid 5α-Reductase Type 3 congenital disorder of glycosylation, and a detailed new case. Folia Biologica, 65(3), 134–141. DOI:

Kuban, W., & Daniel, W. A. (2020). Cytochrome P450 expression and regulation in the brain. Drug Metabolism Reviews, 53(1), 1–29. DOI:

Laing, N., Kraus, S. M., Shaboodien, G., & Ntusi, N. A. B. (2019). An overview of the genetic basis of cardiovascular disease. South African Medical Journal, 109(6), 364. DOI:

Lao, Q., & Merke, D. P. (2021). Molecular genetic testing of congenital adrenal hyperplasia due to 21-hydroxylase deficiency should include CAH-X chimeras. European Journal of Human Genetics, 29(7), 1047–1048. DOI:

Lizneva, D., Suturina, L., Walker, W., Brakta, S., Gavrilova-Jordan, L., & Azziz, R. (2016). Criteria, prevalence, and phenotypes of polycystic ovary syndrome. Fertility and Sterility, 106(1), 6–15. DOI:

Louwers, Y. V., de Jong, F. H., van Herwaarden, N. A. A., Stolk, L., Fauser, B. C. J. M., Uitterlinden, A. G., & Laven, J. S. E. (2013). Variants in SULT2A1 affect the DHEA sulphate to DHEA ratio in patients with polycystic ovary syndrome but not the hyperandrogenic phenotype. The Journal of Clinical Endocrinology & Metabolism, 98(9), 3848–3855. DOI:

McGee, E. A., & Hsueh, A. J. W. (2000). Initial and cyclic recruitment of ovarian follicles. Endocrine Reviews, 21(2), 200–214. DOI:

Miller, W. L. (2017). Steroidogenesis: Unanswered questions. Trends in Endocrinology & Metabolism, 28(11), 771–793. DOI:

Miller, W. L., & Auchus, R. J. (2011, February 1). The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocrine Reviews, 32(1), 81–151. DOI:

Moghetti, P., Tosi, F., Bonin, C., Di Sarra, D., Fiers, T., Kaufman, J. M., Giagulli, V. A., Signori, C., Zambotti, F., Dall’Alda, M., Spiazzi, G., Zanolin, M. E., & Bonora, E. (2013). Divergences in insulin resistance between the different phenotypes of the polycystic ovary syndrome. The Journal of Clinical Endocrinology & Metabolism, 98(4), E628–E637. DOI:

Mueller, J. W., Gilligan, L. C., Idkowiak, J., Arlt, W., & Foster, P. A. (2015). The regulation of steroid action by sulfation and desulfation. Endocrine Reviews, 36(5), 526–563. DOI:

Nelson, E. R., Wardell, S. E., Jasper, J. S., Park, S., Suchindran, S., Howe, M. K., Carver, N. J., Pillai, R. V., Sullivan, P. M., Sondhi, V., Umetani, M., Geradts, J., & McDonnell, D. P. (2013). 27-Hydroxycholesterol links hypercholesterolemia and breast cancer pathophysiology. Science, 342(6162), 1094–1098. DOI:

Pallan, P. S., Wang, C., Lei, L., Yoshimoto, F. K., Auchus, R. J., Waterman, M. R., Guengerich, F. P., & Egli, M. (2015). Human cytochrome P450 21A2, the major steroid 21-hydroxylase. Journal of Biological Chemistry, 290(21), 13128–13143. DOI:

Pandey, A. V., & Flück, C. E. (2013). NADPH P450 oxidoreductase: structure, function, and pathology of diseases. Pharmacology & Therapeutics, 138(2), 229–254. DOI:

Penning, T. M. (2014). Human aldo-keto reductases and the metabolic activation of polycyclic aromatic hydrocarbons. Chemical Research in Toxicology, 27(11), 1901–1917. DOI:

Rainey, W. E., Rehman, K. S., & Carr, B. R. (2004). The human fetal adrenal: making adrenal androgens for placental estrogens. Seminars in Reproductive Medicine, 22(04), 327–336. DOI:

Rasmussen, M., Ekstrand, B., & Zamaratskaia, G. (2013). Regulation of 3β-hydroxysteroid dehydrogenase/Δ5-Δ4 isomerase: A review. International Journal of Molecular Sciences, 14(9), 17926–17942. DOI:

Rižner, T. L. (2016). The important roles of steroid sulfatase and sulfotransferases in gynecological diseases. Frontiers in Pharmacology, 7. DOI:

Rosenfield, R. L., & Ehrmann, D. A. (2016). The pathogenesis of polycystic ovary syndrome (PCOS): the hypothesis of PCOS as functional ovarian hyperandrogenism revisited. Endocrine Reviews, 37(5), 467–520. DOI:

Sacco, J. C., Abouraya, M., Motsinger-Reif, A., Yale, S. H., McCarty, C. A., & Trepanier, L. A. (2012). Evaluation of polymorphisms in the sulfonamide detoxification genes NAT2, CYB5A, and CYB5R3 in patients with sulfonamide hypersensitivity. Pharmacogenetics and Genomics, 22(10), 733–740. DOI:

Saha, S., Dey, S., & Nath, S. (2021). Steroid hormone receptors: links with cell cycle machinery and breast cancer progression. Frontiers in Oncology, 11. DOI:

Simard, J., Ricketts, M. L., Gingras, S., Soucy, P., Feltus, F. A., & Melner, M. H. (2005). Molecular biology of the 3β-hydroxysteroid dehydrogenase/Δ5-Δ4 isomerase gene family. Endocrine Reviews, 26(4), 525–582. DOI:

Taneja, S. S. (2017). Re: HSD3B1 and resistance to androgen-deprivation therapy in prostate cancer: A retrospective, multicohort study. Journal of Urology, 197(1), 150–150. DOI:

Tian, Y., Zhao, L., Zhang, H., Liu, X., Zhao, L., Zhao, X., Li, Y., & Li, J. (2014). AKR1C3 overexpression may serve as a promising biomarker for prostate cancer progression. Diagnostic Pathology, 9(1). DOI:

Tosi, F., Negri, C., Brun, E., Castello, R., Faccini, G., Bonora, E., Muggeo, M., Toscano, V., & Moghetti, P. (2011). Insulin enhances ACTH-stimulated androgen and glucocorticoid metabolism in hyperandrogenic women. European Journal of Endocrinology, 164(2), 197–203. DOI:

Vaidya, A., & Carey, R. M. (2020). Evolution of the primary aldosteronism syndrome: Updating the approach. The Journal of Clinical Endocrinology & Metabolism, 105(12), 3771–3783. DOI:

Valente, C., Alvarez, L., Marks, S. J., Lopez-Parra, A. M., Parson, W., Oosthuizen, O., Oosthuizen, E., Amorim, A., Capelli, C., Arroyo-Pardo, E., Gusmão, L., & Prata, M. J. (2015). Exploring the relationship between lifestyles, diets and genetic adaptations in humans. BMC Genetics, 16(1). DOI:

Villar, J., Celay, J., Alonso, M. M., Rotinen, M., de Miguel, C., Migliaccio, M., & Encío, I. (2007). Transcriptional regulation of the human type 8 17β-hydroxysteroid dehydrogenase gene by C/EBPβ. The Journal of Steroid Biochemistry and Molecular Biology, 105(1–5), 131–139. DOI:

Wang, C. T., Li, C. F., Wu, W. J., Huang, C. N., Li, C. C., Li, W. M., Chan, T. C., Liang, P. I., Hsing, C. H., & Liao, K. M. (2016). High Expression of 17β-hydroxysteroid Dehydrogenase Type 2 is Associated with a Better Prognosis in Urothelial Carcinoma of the Urinary Tract. Journal of Cancer, 7(15), 2221–2230. DOI:

Wu, Q., Ishikawa, T., Sirianni, R., Tang, H., McDonald, J., Yuhanna, I., Thompson, B., Girard, L., Mineo, C., Brekken, R., Umetani, M., Euhus, D., Xie, Y., & Shaul, P. (2013). 27-Hydroxycholesterol promotes cell-autonomous, ER-positive breast cancer growth. Cell Reports, 5(3), 637–645. DOI:

Xiao, Q., Wang, L., Supekar, S., Shen, T., Liu, H., Ye, F., Huang, J., Fan, H., Wei, Z., & Zhang, C. (2020). Structure of human steroid 5α-reductase 2 with the anti-androgen drug finasteride. Nature Communications, 11(1). DOI:

Zhang, X., Peng, Y., Zhao, J., Li, Q., Yu, X., Acevedo-Rocha, C. G., & Li, A. (2020). Bacterial cytochrome P450-catalyzed regio- and stereoselective steroid hydroxylation enabled by directed evolution and rational design. Bioresources and Bioprocessing, 7(1). DOI: