Role of Efferocytosis in Health and Diseases

Main Article Content

Muddasir Hassan Abbasi
Nimra Shehzadi
Arooj Safdar
Rabia Aslam
Arsha Tariq
Misbah Shahid
Azka Zafar
Nadeem Sheikh
Muhammad Babar Khawar

Abstract

Efferocytosis is the process of removal of apoptotic cells through phagocytosis by the specialized cells known as efferocytes. Clearance of dead cells also plays an important role in the defensive system of organisms as efferocytosis maintains homeostasis and repairing of tissues and organs. In this process, the dying cell releases signals for identification and engulfment which is further processed by macrophages. Efferocytosis prevents the secondary necrosis and release of pro-inflammatory cellular contents. This clearance process involves interplay of signaling molecules, receptors, and other mediators that ensures prompt recognitions and removal of dying cells. Dysregulation of efferocytosis has been implicated in various pathological conditions, including autoimmune diseases, chronic inflammation, and atherosclerosis. This review focuses on some common autoimmune diseases, cardiovascular diseases, respiratory disorders, and neurodegenerative disorders due to impaired efferocytosis. To describe the pathophysiology of efferocytosis in diseases more extensive studies are required.

Article Details

How to Cite
Abbasi , M. H., Shehzadi, N., Safdar, A., Aslam, R., Tariq, A., Shahid, M., Zafar, A., Sheikh, N., & Khawar, M. B. (2024). Role of Efferocytosis in Health and Diseases. Albus Scientia, 2024(1), 1–12. https://doi.org/10.56512/AS.2024.1.e240518
Section
Review Articles

References

Abram, C. L., & Lowell, C. A. (2017). Shp1 function in myeloid cells. Journal of Leukocyte Biology,102(3). https://doi.org/10.1189/jlb.2mr0317-105r DOI: https://doi.org/10.1189/jlb.2MR0317-105R

Barkal, A. A., Brewer, R. E., Markovic, M., Kowarsky, M., Barkal, S. A., Zaro, B. W., Krishnan, V., Hatakeyama, J., Dorigo, O., Barkal, L. J., & Weissman, I. L. (2019). CD24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy. Nature, 572(7769). https://doi.org/10.1038/s41586-019-1456-0 DOI: https://doi.org/10.1038/s41586-019-1456-0

Barkal, A. A., Weiskopf, K., Kao, K. S., Gordon, S. R., Rosental, B., Yiu, Y. Y., George, B. M., Markovic, M., Ring, N. G., Tsai, J. M., McKenna, K. M., Ho, P. Y., Cheng, R. Z., Chen, J. Y., Barkal, L. J., Ring, A. M., Weissman, I. L., & Maute, R. L. (2018). Engagement of MHC class i by the inhibitory receptor LILRB1 suppresses macrophages and is a target of cancer immunotherapy article. Nature Immunology, 19(1). https://doi.org/10.1038/s41590-017-0004-z DOI: https://doi.org/10.1038/s41590-017-0004-z

Boada-Romero, E., Martinez, J., Heckmann, B. L., & Green, D. R. (2020). The clearance of dead cells by efferocytosis. In Nature Reviews Molecular Cell Biology, 21( 7). https://doi.org/10.1038/s41580-020-0232-1 DOI: https://doi.org/10.1038/s41580-020-0232-1

Brown, S., Heinisch, I., Ross, E., Shaw, K., Buckley, C. O., & Savill, J. (2002). Apoptosis disables CD31-mediated cell detachment from phagocytes promoting binding and engulfment. Nature, 418, 6894. https://doi.org/10.1038/nature00811 DOI: https://doi.org/10.1038/nature00811

Cabrera, J. T. O., & Makino, A. (2022). Efferocytosis of vascular cells in cardiovascular disease. Pharmacology and Therapeutics, 229, 107919. https://doi.org/10.1016/j.pharmthera.2021.107919 DOI: https://doi.org/10.1016/j.pharmthera.2021.107919

Cancro, M. P., D’Cruz, D. P., & Khamashta, M. A. (2009). The role of B lymphocyte stimulator (BLyS) in systemic lupus erythematosus. In Journal of Clinical Investigation, 119(5). https://doi.org/10.1172/JCI38010 DOI: https://doi.org/10.1172/JCI38010

Chen, K., Murao, A., Arif, A., Takizawa, S., Jin, H., Jiang, J., Aziz, M., & Wang, P. (2021). Inhibition of Efferocytosis by Extracellular CIRP–Induced Neutrophil Extracellular Traps. The Journal of Immunology, 206(4). https://doi.org/10.4049/jimmunol.2000091 DOI: https://doi.org/10.4049/jimmunol.2000091

Cheyuo, C., Aziz, M., & Wang, P. (2019). Neurogenesis in neurodegenerative diseases: Role of mfg-e8. In Frontiers in Neuroscience, 13(6). https://doi.org/10.3389/fnins.2019.00569 DOI: https://doi.org/10.3389/fnins.2019.00569

Clarke, A. J., Ellinghaus, U., Cortini, A., Stranks, A., Simon, A. K., Botto, M., Vyse, T. J., & Kvien, T. K. (2015). Autophagy is activated in systemic lupus erythematosus and required for plasmablast development. Annals of the Rheumatic Diseases, 74(5). https://doi.org/10.1136/annrheumdis-2013-204343 DOI: https://doi.org/10.1136/annrheumdis-2013-204343

Cunnington, M. S., & Keavney, B. (2011). Genetic mechanisms mediating atherosclerosis susceptibility at the chromosome 9p21 locus. In Current Atherosclerosis Reports, 13(3). https://doi.org/10.1007/s11883-011-0178-z DOI: https://doi.org/10.1007/s11883-011-0178-z

Dallenga, T., Repnik, U., Corleis, B., Eich, J., Reimer, R., Griffiths, G. W., & Schaible, U. E. (2017). M. tuberculosis-Induced Necrosis of Infected Neutrophils Promotes Bacterial Growth Following Phagocytosis by Macrophages. Cell Host and Microbe, 22(4). https://doi.org/10.1016/j.chom.2017.09.003 DOI: https://doi.org/10.1016/j.chom.2017.09.003

Doran, A. C., Yurdagul, A., & Tabas, I. (2020). Efferocytosis in health and disease. In Nature Reviews Immunology, 20(4). https://doi.org/10.1038/s41577-019-0240-6 DOI: https://doi.org/10.1038/s41577-019-0240-6

Elliott, M. R., Chekeni, F. B., Trampont, P. C., Lazarowski, E. R., Kadl, A., Walk, S. F., Park, D., Woodson, R. I., Ostankovich, M., Sharma, P., Lysiak, J. J., Harden, T. K., Leitinger, N., & Ravichandran, K. S. (2009). Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature, 461, 7261. https://doi.org/10.1038/nature08296 DOI: https://doi.org/10.1038/nature08296

Fernandez-Boyanapalli, R., McPhillips, K. A., Frasch, S. C., Janssen, W. J., Dinauer, M. C., Riches, D. W. H., Henson, P. M., Byrne, A., & Bratton, D. L. (2010). Impaired Phagocytosis of Apoptotic Cells by Macrophages in Chronic Granulomatous Disease Is Reversed by IFN-γ in a Nitric Oxide-Dependent Manner. The Journal of Immunology, 185(7). https://doi.org/10.4049/jimmunol.1001778 DOI: https://doi.org/10.4049/jimmunol.1001778

Festuccia, W. T., Pouliot, P., Bakan, I., Sabatini, D. M., & Laplante, M. (2014). Myeloid-specific rictor deletion induces M1 macrophage polarization and potentiates in vivo pro-inflammatory response to lipopolysaccharide. PLoS ONE, 9(4). https://doi.org/10.1371/journal.pone.0095432 DOI: https://doi.org/10.1371/journal.pone.0095432

Flannagan, R. S., Jaumouillé, V., & Grinstein, S. (2012). The cell biology of phagocytosis. In Annual Review of Pathology: Mechanisms of Disease,7. https://doi.org/10.1146/annurev-pathol-011811-132445 DOI: https://doi.org/10.1146/annurev-pathol-011811-132445

Florey, O., Kim, S. E., Sandoval, C. P., Haynes, C. M., & Overholtzer, M. (2011). Autophagy machinery mediates macroendocytic processing and entotic cell death by targeting single membranes. Nature Cell Biology, 13(11). https://doi.org/10.1038/ncb2363 DOI: https://doi.org/10.1038/ncb2363

Fox, S., Leitch, A. E., Duffin, R., Haslett, C., & Rossi, A. G. (2010). Neutrophil apoptosis: Relevance to the innate immune response and inflammatory disease. In Journal of Innate Immunity, 2(3). https://doi.org/10.1159/000284367 DOI: https://doi.org/10.1159/000284367

Fricker, M., Neher, J. J., Zhao, J. W., Théry, C., Tolkovsky, A. M., & Brown, G. C. (2012). MFG-E8 mediates primary phagocytosis of viable neurons during neuroinflammation. Journal of Neuroscience, 32(8). https://doi.org/10.1523/JNEUROSCI.4837-11.2012 DOI: https://doi.org/10.1523/JNEUROSCI.4837-11.2012

Fuchs, Y., & Steller, H. (2011). Programmed cell death in animal development and disease. Cell, 147(4). https://doi.org/10.1016/j.cell.2011.10.033 DOI: https://doi.org/10.1016/j.cell.2011.10.033

Galluzzi, L., Vitale, I., Aaronson, S. A., Abrams, J. M., Adam, D., Agostinis, P., Alnemri, E. S., Altucci, L., Amelio, I., Andrews, D. W., Annicchiarico-Petruzzelli, M., Antonov, A. V., Arama, E., Baehrecke, E. H., Barlev, N. A., Bazan, N. G., Bernassola, F., Bertrand, M. J. M., Bianchi, K., … Kroemer, G. (2018). Molecular mechanisms of cell death: Recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death and Differentiation, 25(3). https://doi.org/10.1038/s41418-017-0012-4 DOI: https://doi.org/10.1038/s41418-017-0012-4

Gardai, S. J., McPhillips, K. A., Frasch, S. C., Janssen, W. J., Starefeldt, A., Murphy-Ullrich, J. E., Bratton, D. L., Oldenborg, P. A., Michalak, M., & Henson, P. M. (2005). Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell, 123(2). https://doi.org/10.1016/j.cell.2005.08.032 DOI: https://doi.org/10.1016/j.cell.2005.08.032

Ge, Y., Huang, M., & Yao, Y. M. (2022). Efferocytosis and Its Role in Inflammatory Disorders. Frontiers in Cell and Developmental Biology, 10. https://doi.org/10.3389/fcell.2022.839248 DOI: https://doi.org/10.3389/fcell.2022.839248

Gheibi Hayat, S. M., Bianconi, V., Pirro, M., & Sahebkar, A. (2019). Efferocytosis: molecular mechanisms and pathophysiological perspectives. Immunology and Cell Biology, 97(2). https://doi.org/10.1111/imcb.12206 DOI: https://doi.org/10.1111/imcb.12206

Greenlee-Wacker, M. C., Rigby, K. M., Kobayashi, S. D., Porter, A. R., DeLeo, F. R., & Nauseef, W. M. (2014). Phagocytosis of Staphylococcus aureus by Human Neutrophils Prevents Macrophage Efferocytosis and Induces Programmed Necrosis. The Journal of Immunology, 192(10). https://doi.org/10.4049/jimmunol.1302692 DOI: https://doi.org/10.4049/jimmunol.1302692

Gude, D. R., Alvarez, S. E., Paugh, S. W., Mitra, P., Yu, J., Griffiths, R., Barbour, S. E., Milstien, S., & Spiegel, S. (2008). Apoptosis induces expression of sphingosine kinase 1 to release sphingosine‐1‐phosphate as a “come‐and‐get‐me” signal. The FASEB Journal, 22(8). https://doi.org/10.1096/fj.08-107169 DOI: https://doi.org/10.1096/fj.08-107169

Hall-Roberts, H., Di Daniel, E., James, W. S., Davis, J. B., & Cowley, S. A. (2021). In vitro quantitative imaging assay for phagocytosis of dead neuroblastoma cells by IPSC-macrophages. Journal of Visualized Experiments, 2021(168). https://doi.org/10.3791/62217 DOI: https://doi.org/10.3791/62217-v

Hamilton, N., Rutherford, H. A., Petts, J. J., Isles, H. M., Weber, T., Henneke, M., Gärtner, J., Dunning, M. J., & Renshaw, S. A. (2020). The failure of microglia to digest developmental apoptotic cells contributes to the pathology of RNASET2-deficient leukoencephalopathy. GLIA, 68(7). https://doi.org/10.1002/glia.23829 DOI: https://doi.org/10.1002/glia.23829

Hanss, Z., Larsen, S. B., Antony, P., Mencke, P., Massart, F., Jarazo, J., Schwamborn, J. C., Barbuti, P. A., Mellick, G. D., & Krüger, R. (2021). Mitochondrial and Clearance Impairment in p.D620N VPS35 Patient-Derived Neurons. Movement Disorders, 36(3). https://doi.org/10.1002/mds.28365 DOI: https://doi.org/10.1002/mds.28365

Heckmann, B. L., Teubner, B. J. W., Tummers, B., Boada-Romero, E., Harris, L., Yang, M., Guy, C. S., Zakharenko, S. S., & Green, D. R. (2019). LC3-Associated Endocytosis Facilitates β-Amyloid Clearance and Mitigates Neurodegeneration in Murine Alzheimer’s Disease. Cell, 178(3). https://doi.org/10.1016/j.cell.2019.05.056 DOI: https://doi.org/10.1016/j.cell.2019.05.056

Heimberg, H., Heremans, Y., Jobin, C., Leemans, R., Cardozo, A. K., Darville, M., & Eizirik, D. L. (2001). Inhibition of Cytokine-Induced NF-κB Activation by Adenovirus-Mediated Expression of a NF-κB Super-Repressor Prevents β-Cell Apoptosis. Diabetes, 50(10). https://doi.org/10.2337/diabetes.50.10.2219 DOI: https://doi.org/10.2337/diabetes.50.10.2219

Henault, J., Martinez, J., Riggs, J. M., Tian, J., Mehta, P., Clarke, L., Sasai, M., Latz, E., Brinkmann, M. M., Iwasaki, A., Coyle, A. J., Kolbeck, R., Green, D. R., & Sanjuan, M. A. (2012). Noncanonical Autophagy Is Required for Type I Interferon Secretion in Response to DNA-Immune Complexes. Immunity, 37(6). https://doi.org/10.1016/j.immuni.2012.09.014 DOI: https://doi.org/10.1016/j.immuni.2012.09.014

Herrmann, M., Voll, R. E., Zoller, O. M., Hagenhofer, M., Ponner, B. B., & Kalden, J. R. (1998). Impaired phagocytosis of apoptotic cell material by monocyte-derived macrophages from patients with systemic lupus erythematosus. Arthritis and Rheumatism, 41(7). https://doi.org/10.1002/1529-0131(199807)41:7<1241: AID-ART15>3.0.CO;2-H DOI: https://doi.org/10.1002/1529-0131(199807)41:7<1241::AID-ART15>3.0.CO;2-H

Hobby, A. R. H., Sharp, T. E., Berretta, R. M., Borghetti, G., Feldsott, E., Mohsin, S., & Houser, S. R. (2019). Cortical bone-derived stem cell therapy reduces apoptosis after myocardial infarction. American Journal of Physiology - Heart and Circulatory Physiology, 317(4). https://doi.org/10.1152/ajpheart.00144.2019 DOI: https://doi.org/10.1152/ajpheart.00144.2019

Hodge, S., Hodge, G., Jersmann, H., Matthews, G., Ahern, J., Holmes, M., & Reynolds, P. N. (2008). Azithromycin improves macrophage phagocytic function and expression of mannose receptor in chronic obstructive pulmonary disease. American Journal of Respiratory and Critical Care Medicine, 178(2). https://doi.org/10.1164/rccm.200711-1666OC DOI: https://doi.org/10.1164/rccm.200711-1666OC

Hogg, J. C., & Timens, W. (2009). The pathology of chronic obstructive pulmonary disease. Annual Review of Pathology: Mechanisms of Disease, 4. https://doi.org/10.1146/annurev.pathol.4.110807.092145 DOI: https://doi.org/10.1146/annurev.pathol.4.110807.092145

Hosseini, R., Lamers, G. E. M., Soltani, H. M., Meijer, A. H., Spaink, H. P., & Schaaf, M. J. M. (2016). Efferocytosis and extrusion of leukocytes determine the progression of early mycobacterial pathogenesis. Journal of Cell Science, 129(18). https://doi.org/10.1242/jcs.135194 DOI: https://doi.org/10.1242/jcs.135194

Huppert, L. A., Matthay, M. A., & Ware, L. B. (2019). Pathogenesis of Acute Respiratory Distress Syndrome. Seminars in Respiratory and Critical Care Medicine, 40(1). https://doi.org/10.1055/s-0039-1683996 DOI: https://doi.org/10.1055/s-0039-1683996

Kaul, A., Gordon, C., Crow, M. K., Touma, Z., Urowitz, M. B., Van Vollenhoven, R., Ruiz-Irastorza, G., & Hughes, G. (2016). Systemic lupus erythematosus. Nature Reviews Disease Primers, 2. https://doi.org/10.1038/nrdp.2016.39 DOI: https://doi.org/10.1038/nrdp.2016.39

Kawano, M., & Nagata, S. (2018). Efferocytosis and autoimmune disease. International Immunology, 30(12). https://doi.org/10.1093/intimm/dxy055 DOI: https://doi.org/10.1093/intimm/dxy055

Kelley, S. M., & Ravichandran, K. S. (2021). Putting the brakes on phagocytosis: “don’t‐eat‐me” signaling in physiology and disease. EMBO Reports, 22(6). https://doi.org/10.15252/embr.202152564 DOI: https://doi.org/10.15252/embr.202152564

Khanna, S., Biswas, S., Shang, Y., Collard, E., Azad, A., Kauh, C., Bhasker, V., Gordillo, G. M., Sen, C. K., & Roy, S. (2010). Macrophage dysfunction impairs resolution of inflammation in the wounds of diabetic mice. PLoS ONE, 5(3). https://doi.org/10.1371/journal.pone.0009539 DOI: https://doi.org/10.1371/journal.pone.0009539

Kim, S. J., Gershov, D., Ma, X., Brot, N., & Elkon, K. B. (2002). I-PLA2 activation during apoptosis promotes the exposure of membrane lysophosphatidylcholine leading to binding by natural immunoglobulin M antibodies and complement activation. Journal of Experimental Medicine, 196(5). https://doi.org/10.1084/jem.20020542 DOI: https://doi.org/10.1084/jem.20020542

Kissing, S., Hermsen, C., Repnik, U., Nesset, C. K., Von Bargen, K., Griffiths, G., Ichihara, A., Lee, B. S., Schwake, M., De Brabander, J., Haas, A., & Saftig, P. (2015). Vacuolar ATPase in phagosome-lysosome fusion. Journal of Biological Chemistry, 290(22). https://doi.org/10.1074/jbc.M114.628891 DOI: https://doi.org/10.1074/jbc.M114.628891

Kojima, K., Komatsu, S., Kakuta, T., Fukamachi, D., Kimura, S., Fujii, H., Matsuura, M., Dai, K., Matsuoka, H., Higuchi, Y., Ueda, Y., Asakura, M., Yutani, C., Okumura, Y., Eikelboom, J. W., Hirayama, A., & Kodama, K. (2022). Aortic plaque burden predicts vascular events in patients with cardiovascular disease: The EAST-NOGA study. Journal of Cardiology, 79(1). https://doi.org/10.1016/j.jjcc.2021.08.028 DOI: https://doi.org/10.1016/j.jjcc.2021.08.028

Krysko, D. V., & Vandenabeele, P. (2010). Clearance of dead cells: Mechanisms, immune responses, and implication in the development of diseases. Apoptosis, 15(9). https://doi.org/10.1007/s10495-010-0524-6 DOI: https://doi.org/10.1007/s10495-010-0524-6

Lareau, S. C., Fahy, B., Meek, P., & Wang, A. (2019). Chronic obstructive pulmonary disease (COPD). American Journal of Respiratory and Critical Care Medicine,199(1). https://doi.org/10.1164/rccm.1991p1 DOI: https://doi.org/10.1164/rccm.1991P1

Lauber, K., Bohn, E., Kröber, S. M., Xiao, Y. J., Blumenthal, S. G., Lindemann, R. K., Marini, P., Wiedig, C., Zobywalski, A., Baksh, S., Xu, Y., Autenrieth, I. B., Schulze-Osthoff, K., Belka, C., Stuhler, G., & Wesselborg, S. (2003). Apoptotic cells induce migration of phagocytes via caspase-3-mediated release of a lipid attraction signal. Cell, 113(6). https://doi.org/10.1016/S0092-8674(03)00422-7 DOI: https://doi.org/10.1016/S0092-8674(03)00422-7

Lazzerini, P. E., Acampa, M., Capecchi, P. L., Hammoud, M., Maffei, S., Bisogno, S., Barreca, C., Galeazzi, M., & Laghi-Pasini, F. (2013). Association between high sensitivity C-reactive protein, heart rate variability and corrected QT interval in patients with chronic inflammatory arthritis. European Journal of Internal Medicine, 24(4). https://doi.org/10.1016/j.ejim.2013.02.009 DOI: https://doi.org/10.1016/j.ejim.2013.02.009

Lazzerini, P. E., Capecchi, P. L., & Laghi-Pasini, F. (2016). Assessing QT interval in patients with autoimmune chronic inflammatory diseases: Perils and pitfalls. Lupus Science and Medicine, 3(1). https://doi.org/10.1136/lupus-2016-000189 DOI: https://doi.org/10.1136/lupus-2016-000189

Liu, L., Li, H., Hu, D., Wang, Y., Shao, W., Zhong, J., Yang, S., Liu, J., & Zhang, J. (2022). Insights into N6-methyladenosine and programmed cell death in cancer. In Molecular Cancer, 21(1). https://doi.org/10.1186/s12943-022-01508-w DOI: https://doi.org/10.1186/s12943-022-01508-w

Márquez-Ropero, M., Benito, E., Plaza-Zabala, A., & Sierra, A. (2020). Microglial Corpse Clearance: Lessons From Macrophages. Frontiers in Immunology, 11. https://doi.org/10.3389/fimmu.2020.00506 DOI: https://doi.org/10.3389/fimmu.2020.00506

Martin, C. J., Booty, M. G., Rosebrock, T. R., Nunes-Alves, C., Desjardins, D. M., Keren, I., Fortune, S. M., Remold, H. G., & Behar, S. M. (2012). Efferocytosis is an innate antibacterial mechanism. Cell Host and Microbe, 12(3). https://doi.org/10.1016/j.chom.2012.06.010 DOI: https://doi.org/10.1016/j.chom.2012.06.010

Martin, C. J., Peters, K. N., & Behar, S. M. (2014). Macrophages clean up: Efferocytosis and microbial control. Current Opinion in Microbiology, 17(1). https://doi.org/10.1016/j.mib.2013.10.007 DOI: https://doi.org/10.1016/j.mib.2013.10.007

Martinet, W., Schrijvers, D. M., & De Meyer, G. R. Y. (2011). Necrotic cell death in atherosclerosis. Basic Research in Cardiology, 106(5). https://doi.org/10.1007/s00395-011-0192-x DOI: https://doi.org/10.1007/s00395-011-0192-x

Martinez, J., Cunha, L. D., Park, S., Yang, M., Lu, Q., Orchard, R., Li, Q. Z., Yan, M., Janke, L., Guy, C., Linkermann, A., Virgin, H. W., & Green, D. R. (2016). Noncanonical autophagy inhibits the autoinflammatory, lupus-like response to dying cells. Nature, 533(7601). https://doi.org/10.1038/nature17950 DOI: https://doi.org/10.1038/nature17950

Maruyama, K., Asai, J., Ii, M., Thorne, T., Losordo, D. W., & D’Amore, P. A. (2007). Decreased macrophage number and activation lead to reduced lymphatic vessel formation and contribute to impaired diabetic wound healing. American Journal of Pathology, 170(4). https://doi.org/10.2353/ajpath.2007.060018 DOI: https://doi.org/10.2353/ajpath.2007.060018

McCubbrey, A. L., & Curtis, J. L. (2013). Efferocytosis and lung disease. Chest, 143(6). https://doi.org/10.1378/chest.12-2413 DOI: https://doi.org/10.1378/chest.12-2413

McGrath, E. E., Lawrie, A., Marriott, H. M., Mercer, P., Cross, S. S., Arnold, N., Singleton, V., Thompson, A. A. R., Walmsley, S. R., Renshaw, S. A., Sabroe, I., Chambers, R. C., Dockrell, D. H., & Whyte, M. K. B. (2012). Deficiency of tumour necrosis factor-related apoptosis-inducing ligand exacerbates lung injury and fibrosis. Thorax, 67(9). https://doi.org/10.1136/thoraxjnl-2011-200863 DOI: https://doi.org/10.1136/thoraxjnl-2011-200863

Medina, C. B., Mehrotra, P., Arandjelovic, S., Perry, J. S. A., Guo, Y., Morioka, S., Barron, B., Walk, S. F., Ghesquière, B., Krupnick, A. S., Lorenz, U., & Ravichandran, K. S. (2020). Metabolites released from apoptotic cells act as tissue messengers. Nature, 580(7801). https://doi.org/10.1038/s41586-020-2121-3 DOI: https://doi.org/10.1038/s41586-020-2121-3

Mehrotra, P., & Ravichandran, K. S. (2022). Drugging the efferocytosis process: concepts and opportunities. Nature Reviews Drug Discovery. https://doi.org/10.1038/s41573-022-00470-y DOI: https://doi.org/10.1038/s41573-022-00470-y

Mercer, J., & Helenius, A. (2008). Vaccinia virus uses macropinocytosis and apoptotic mimicry to enter host cells. Science, 320(5875). https://doi.org/10.1126/science.1155164 DOI: https://doi.org/10.1126/science.1155164

Michalski, J. E., & Schwartz, D. A. (2020). Genetic risk factors for idiopathic pulmonary fibrosis: Insights into immunopathogenesis. Journal of Inflammation Research, 13. https://doi.org/10.2147/JIR.S280958 DOI: https://doi.org/10.2147/JIR.S280958

Mizushima, N., Ohsumi, Y., & Yoshimori, T. (2002). Autophagosome formation in mammalian cells. Cell Structure and Function, 27(6). https://doi.org/10.1247/csf.27.421 DOI: https://doi.org/10.1247/csf.27.421

Moraco, A. H., & Kornfeld, H. (2014). Cell death and autophagy in tuberculosis. In Seminars in Immunology (Vol. 26, Issue 6). https://doi.org/10.1016/j.smim.2014.10.001 DOI: https://doi.org/10.1016/j.smim.2014.10.001

Mũoz, L. E., Lauber, K., Schiller, M., Manfredi, A. A., & Herrmann, M. (2010). The role of defective clearance of apoptotic cells in systemic autoimmunity. In Nature Reviews Rheumatology (Vol. 6, Issue 5). https://doi.org/10.1038/nrrheum.2010.46 DOI: https://doi.org/10.1038/nrrheum.2010.46

Nakamura, S., & Yoshimori, T. (2017). New insights into autophagosome-lysosome fusion. In Journal of Cell Science (Vol. 130, Issue 7). https://doi.org/10.1242/jcs.196352 DOI: https://doi.org/10.1242/jcs.196352

Naoi, M., Maruyama, W., & Shamoto-Nagai, M. (2020). Rasagiline and selegiline modulate mitochondrial homeostasis, intervene apoptosis system and mitigate α-synuclein cytotoxicity in disease-modifying therapy for Parkinson’s disease. In Journal of Neural Transmission (Vol. 127, Issue 2). https://doi.org/10.1007/s00702-020-02150-w DOI: https://doi.org/10.1007/s00702-020-02150-w

Noda, N., Matsumoto, K., Fukuyama, S., Asai, Y., Kitajima, H., Seki, N., Matsunaga, Y., Kan-O, K., Moriwaki, A., Morimoto, K., Inoue, H., & Nakanishi, Y. (2013). Cigarette smoke impairs phagocytosis of apoptotic neutrophils by alveolar macrophages via inhibition of the histone deacetylase/Rac/CD9 pathways. International Immunology, 25(11). https://doi.org/10.1093/intimm/dxt033 DOI: https://doi.org/10.1093/intimm/dxt033

Noone, P. M., & Reddy, S. P. (2021). Recent advances in dead cell clearance during acute lung injury and repair. Faculty Reviews, 10. https://doi.org/10.12703/r/10-33 DOI: https://doi.org/10.12703/r/10-33

O’Brien, B. A., Geng, X., Orteu, C. H., Huang, Y., Ghoreishi, M., Zhang, Y. Q., Bush, J. A., Li, G., Finegood, D. T., & Dutz, J. P. (2006). A deficiency in the in vivo clearance of apoptotic cells is a feature of the NOD mouse. Journal of Autoimmunity, 26(2). https://doi.org/10.1016/j.jaut.2005.11.006 DOI: https://doi.org/10.1016/j.jaut.2005.11.006

Ogden, C. A., DeCathelineau, A., Hoffmann, P. R., Bratton, D., Fadok, B., Ghebrehiwet, V. A., & Henson, P. M. (2001). C1q and mannose binding lectin engagement of cell surface calreticulin and CD91 initiates macropinocytosis and uptake of apoptotic cells. Journal of Experimental Medicine, 194(6). https://doi.org/10.1084/jem.194.6.781 DOI: https://doi.org/10.1084/jem.194.6.781

Oldenborg, P. A., Zheleznyak, A., Fang, Y. F., Lagenaur, C. F., Gresham, H. D., & Lindberg, F. P. (2000). Role of CD47 as a marker of self on red blood cells. Science, 288(5473). https://doi.org/10.1126/science.288.5473.2051 DOI: https://doi.org/10.1126/science.288.5473.2051

Peng, Y. F., & Elkon, K. B. (2011). Autoimmunity in MFG-E8-deficient mice is associated with altered trafficking and enhanced cross-presentation of apoptotic cell antigens. Journal of Clinical Investigation, 121(6). https://doi.org/10.1172/JCI43254 DOI: https://doi.org/10.1172/JCI43254

Phan, T. H. G., Paliogiannis, P., Nasrallah, G. K., Giordo, R., Eid, A. H., Fois, A. G., Zinellu, A., Mangoni, A. A., & Pintus, G. (2021). Emerging cellular and molecular determinants of idiopathic pulmonary fibrosis. In Cellular and Molecular Life Sciences (Vol. 78, Issue 5). https://doi.org/10.1007/s00018-020-03693-7 DOI: https://doi.org/10.1007/s00018-020-03693-7

Potter, P. K., Cortes-Hernandez, J., Quartier, P., Botto, M., & Walport, M. J. (2003). Lupus-Prone Mice Have an Abnormal Response to Thioglycolate and an Impaired Clearance of Apoptotic Cells. The Journal of Immunology, 170(6). https://doi.org/10.4049/jimmunol.170.6.3223 DOI: https://doi.org/10.4049/jimmunol.170.6.3223

Razi, S., Yaghmoorian Khojini, J., Kargarijam, F., Panahi, S., Tahershamsi, Z., Tajbakhsh, A., & Gheibihayat, S. M. (2023). Macrophage efferocytosis in health and disease. In Cell Biochemistry and Function (Vol. 41, Issue 2). https://doi.org/10.1002/cbf.3780 DOI: https://doi.org/10.1002/cbf.3780

Ribeiro-Gomes, F. L., Peters, N. C., Debrabant, A., & Sacks, D. L. (2012). Efficient capture of infected neutrophils by dendritic cells in the skin inhibits the early anti-leishmania response. PLoS Pathogens, 8(2). https://doi.org/10.1371/journal.ppat.1002536 DOI: https://doi.org/10.1371/journal.ppat.1002536

Richards, D. M., & Endres, R. G. (2014). The mechanism of phagocytosis: Two stages of engulfment. Biophysical Journal, 107(7). https://doi.org/10.1016/j.bpj.2014.07.070 DOI: https://doi.org/10.1016/j.bpj.2014.07.070

Roth, G. A., Mensah, G. A., Johnson, C. O., Addolorato, G., Ammirati, E., Baddour, L. M., Barengo, N. C., Beaton, A., Benjamin, E. J., Benziger, C. P., Bonny, A., Brauer, M., Brodmann, M., Cahill, T. J., Carapetis, J. R., Catapano, A. L., Chugh, S., Cooper, L. T., Coresh, J., … Fuster, V. (2020). Global Burden of Cardiovascular Diseases and Risk Factors, 1990-2019: Update from the GBD 2019 Study. In Journal of the American College of Cardiology (Vol. 76, Issue 25). https://doi.org/10.1016/j.jacc.2020.11.010 DOI: https://doi.org/10.1016/j.jacc.2020.11.021

Rubino, M., Miaczynska, M., Lippé, R., & Zerial, M. (2000). Selective membrane recruitment of EEA1 suggests a role in directional transport of clathrin-coated vesicles to early endosomes. Journal of Biological Chemistry, 275(6). https://doi.org/10.1074/jbc.275.6.3745 DOI: https://doi.org/10.1074/jbc.275.6.3745

Scaffidi, P., Misteli, T., & Bianchi, M. E. (2002). Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature, 418(6894). https://doi.org/10.1038/nature00858 DOI: https://doi.org/10.1038/nature00858

Schillaci, G., Pirro, M., Ronti, T., Gemelli, F., Pucci, G., Innocente, S., Porcellati, C., & Mannarino, E. (2006). Prognostic impact of prolonged ventricular repolarization in hypertension. Archives of Internal Medicine, 166(8). https://doi.org/10.1001/archinte.166.8.909 DOI: https://doi.org/10.1001/archinte.166.8.909

Shi, J., Gao, W., & Shao, F. (2017). Pyroptosis: Gasdermin-Mediated Programmed Necrotic Cell Death. In Trends in Biochemical Sciences (Vol. 42, Issue 4). https://doi.org/10.1016/j.tibs.2016.10.004 DOI: https://doi.org/10.1016/j.tibs.2016.10.004

Shi, M., Chu, F., Zhu, F., & Zhu, J. (2022). Impact of Anti-amyloid-β Monoclonal Antibodies on the Pathology and Clinical Profile of Alzheimer’s Disease: A Focus on Aducanumab and Lecanemab. In Frontiers in Aging Neuroscience (Vol. 14). https://doi.org/10.3389/fnagi.2022.870517 DOI: https://doi.org/10.3389/fnagi.2022.870517

Shi, Y., Evans, J. E., & Rock, K. L. (2003). Molecular identification of a danger signal that alerts the immune system to dying cells. Nature, 425(6957). https://doi.org/10.1038/nature01991 DOI: https://doi.org/10.1038/nature01991

Suzanne, M., & Steller, H. (2013). Shaping organisms with apoptosis. In Cell Death and Differentiation (Vol. 20, Issue 5). https://doi.org/10.1038/cdd.2013.11 DOI: https://doi.org/10.1038/cdd.2013.11

Suzuki, S., Ishii, M., Asakura, T., Namkoong, H., Okamori, S., Yagi, K., Kamata, H., Kusumoto, T., Kagawa, S., Hegab, A. E., Yoda, M., Horiuchi, K., Hasegawa, N., & Betsuyaku, T. (2020). ADAM17 protects against elastase-induced emphysema by suppressing CD62L+ leukocyte infiltration in mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 318(6). https://doi.org/10.1152/ajplung.00214.2019 DOI: https://doi.org/10.1152/ajplung.00214.2019

Tajbakhsh, A., Gheibihayat, S. M., Askari, H., Savardashtaki, A., Pirro, M., Johnston, T. P., & Sahebkar, A. (2022). Statin-regulated phagocytosis and efferocytosis in physiological and pathological conditions. In Pharmacology and Therapeutics (Vol. 238). https://doi.org/10.1016/j.pharmthera.2022.108282 DOI: https://doi.org/10.1016/j.pharmthera.2022.108282

Truman, L. A., Ford, C. A., Pasikowska, M., Pound, J. D., Wilkinson, S. J., Dumitriu, I. E., Melville, L., Melrose, L. A., Ogden, C. A., Nibbs, R., Graham, G., Combadiere, C., & Gregory, C. D. (2008). CX3CL 1/fractalkine is released from apoptotic lymphocytes to stimulate macrophage chemotaxis. Blood, 112(13). https://doi.org/10.1182/blood-2008-06-162404 DOI: https://doi.org/10.1182/blood-2008-06-162404

Uddin, Md. S., Al Mamun, A., Rahman, Md. A., Behl, T., Perveen, A., Hafeez, A., Bin-Jumah, M. N., Abdel-Daim, M. M., & Ashraf, G. M. (2020). Emerging Proof of Protein Misfolding and Interactions in Multifactorial Alzheimer’s Disease. Current Topics in Medicinal Chemistry, 20(26). https://doi.org/10.2174/1568026620666200601161703 DOI: https://doi.org/10.2174/1568026620666200601161703

Ugrumov, M. (2020). Development of early diagnosis of Parkinson’s disease: Illusion or reality? In CNS Neuroscience and Therapeutics (Vol. 26, Issue 10). https://doi.org/10.1111/cns.13429 DOI: https://doi.org/10.1111/cns.13429

Van Pottelberge, G. R., Bracke, K. R., Pauwels, N. S., Vermassen, F. E., Joos, G. F., & Brusselle, G. G. (2012). COPD is associated with reduced pulmonary interstitial expression of pentraxin-3. European Respiratory Journal, 39(4). https://doi.org/10.1183/09031936.00138110 DOI: https://doi.org/10.1183/09031936.00138110

van Zandbergen, G., Klinger, M., Mueller, A., Dannenberg, S., Gebert, A., Solbach, W., & Laskay, T. (2004). Cutting Edge: Neutrophil Granulocyte Serves as a Vector for Leishmania Entry into Macrophages. The Journal of Immunology, 173(11). https://doi.org/10.4049/jimmunol.173.11.6521 DOI: https://doi.org/10.4049/jimmunol.173.11.6521

Weigert, A., Johann, A. M., Von Knethen, A., Schmidt, H., Geisslinger, G., & Brüne, B. (2006). Apoptotic cells promote macrophage survival by releasing the antiapoptotic mediator sphingosine-1-phosphate. Blood, 108(5). https://doi.org/10.1182/blood-2006-04-014852 DOI: https://doi.org/10.1182/blood-2006-04-014852

Yang, F., He, Y., Zhai, Z., Sun, E., & Guan, Q. (2019). Programmed Cell Death Pathways in the Pathogenesis of Systemic Lupus Erythematosus. In Journal of Immunology Research (Vol. 2019). https://doi.org/10.1155/2019/3638562 DOI: https://doi.org/10.1155/2019/3638562

Yao, B. C., Meng, L. B., Hao, M. L., Zhang, Y. M., Gong, T., & Guo, Z. G. (2019). Chronic stress: a critical risk factor for atherosclerosis. In Journal of International Medical Research (Vol. 47, Issue 4). https://doi.org/10.1177/0300060519826820 DOI: https://doi.org/10.1177/0300060519826820

Yesiltas, M. A., Haberal, İ., Koyuncu, A. O., Batur, Ş., Ozsoy, S. D., Ak, H. Y., Oz, A. B., & Sayili, U. (2021). Effects of statin on atherosclerosis of ascending aorta in patients undergoing coronary artery bypass grafting. Asian Journal of Medical Sciences, 12(4). https://doi.org/10.3126/ajms.v12i4.33178 DOI: https://doi.org/10.3126/ajms.v12i4.33178

Yoshimura, C., Nagasaka, A., Kurose, H., & Nakaya, M. (2020). Efferocytosis during myocardial infarction. In Journal of Biochemistry (Vol. 168, Issue 1). https://doi.org/10.1093/jb/mvaa051 DOI: https://doi.org/10.1093/jb/mvaa051

Yurdagul, A., Doran, A. C., Cai, B., Fredman, G., & Tabas, I. A. (2018). Mechanisms and Consequences of Defective Efferocytosis in Atherosclerosis. In Frontiers in Cardiovascular Medicine (Vol. 4). https://doi.org/10.3389/fcvm.2017.00086 DOI: https://doi.org/10.3389/fcvm.2017.00086

Zhang, T., Yong, S. L., Drinko, J. K., Popović, Z. B., Shryock, J. C., Belardinelli, L., & Wang, Q. K. (2011). LQTS mutation N1325S in cardiac sodium channel gene SCN5A causes cardiomyocyte apoptosis, cardiac fibrosis, and contractile dysfunction in mice. International Journal of Cardiology, 147(2). https://doi.org/10.1016/j.ijcard.2009.08.047 DOI: https://doi.org/10.1016/j.ijcard.2009.08.047

Zhang, Y., Wang, Y., Ding, J., & Liu, P. (2022). Efferocytosis in multisystem diseases (Review). In Molecular Medicine Reports (Vol. 25, Issue 1). https://doi.org/10.3892/mmr.2021.12529 DOI: https://doi.org/10.3892/mmr.2021.12529

Zhao, B., Wang, D., Liu, Y., Zhang, X., Wan, Z., Wang, J., Su, T., Duan, L., Wang, Y., Zhang, Y., & Zhao, Y. (2020). Six-Gene Signature Associated with Immune Cells in the Progression of Atherosclerosis Discovered by Comprehensive Bioinformatics Analyses. Cardiovascular Therapeutics, 2020. https://doi.org/10.1155/2020/1230513 DOI: https://doi.org/10.1155/2020/1230513

Zheng, D. J., Taka, M. A., & Heit, B. (2021). Role of apoptotic cell clearance in pneumonia and inflammatory lung disease. In Pathogens (Vol. 10, Issue 2). https://doi.org/10.3390/pathogens10020134 DOI: https://doi.org/10.3390/pathogens10020134

Zhou, X. J., Lu, X. L., Lv, J. C., Yang, H. Z., Qin, L. X., Zhao, M. H., Su, Y., Li, Z. G., & Zhang, H. (2011). Genetic association of PRDM1-ATG5 intergenic region and autophagy with systemic lupus erythematosus in a Chinese population. Annals of the Rheumatic Diseases, 70(7). https://doi.org/10.1136/ard.2010.140111 DOI: https://doi.org/10.1136/ard.2010.140111

Most read articles by the same author(s)

1 2 > >>