Alterations in serum Thyroid and Reproductive hormone levels in occupationally exposed pesticides sprayers

Main Article Content

Nimra Naveed
Uswa Javed
Bibi Fatima
Usama Atiq
Shaaf Ahmad
Kaleem Maqsood
Muhammad Amir Iqbal
Nabila Roohi

Abstract

Background: Pesticides contain endocrine disrupting chemicals that have potential to perturb the normal thyroid and reproductive hormone axis. The aim of present study was to estimate the variations in serum tri-iodothyronine (T3) tetra-iodothyronine (T4) thyroid stimulating hormone (TSH) and testosterone levels in occupationally exposed pesticide sprayers in comparison to controls.


Methods: For this purpose, blood samples of (n=50) pesticide sprayers were collected from District Layyah, south Punjab, Pakistan. Whereas, samples (n=25) of healthy control subjects were obtained from University of the Punjab, Lahore. Levels of T3, T4, TSH and testosterone in the serum were estimated by ELISA technique. The data obtained was analyzed by applying Un-paired Student “t” test at with significance level of P < 0.05. Graph pad prism version 6.0 software was utilized for statistical interpretation.


Results: Pronounced (P < 0.0001) decrease of both T3 and T4, whereas, a significant increase in TSH (P = 0.005) level was evidenced in pesticide sprayers as compared to controls. Moreover, a significant decrease (P < 0.001) was noted in the level of testosterone in pesticide sprayers as compared to controls.


Conclusion: Pertinently, the pesticides are a potent source of inducing imbalances in T3, T4, TSH, and testosterone secretion. Pesticide sprayers are, therefore, recommended to use prophylactic measures like wearing face masks and opt safer protocols in order to avoid direct hazardous exposure to endocrine disrupting chemicals.

Article Details

How to Cite
Naveed, N., Javed, U., Fatima, B., Atiq, U., Ahmad, S., Maqsood, K., Iqbal, M. A., & Roohi, N. (2023). Alterations in serum Thyroid and Reproductive hormone levels in occupationally exposed pesticides sprayers. Albus Scientia, 2023(1), 1–6. https://doi.org/10.56512/AS.2023.1.e230504
Section
Articles

References

Abdallah, M. S., Saad-Hussein, A., Shahy, E. M., Seleem, M., & Abdel-Aleem, A. M. (2017). Effects of occupational exposure to pesticides on male sex hormones. Journal of Bioscience and Applied Research, 3(3), 70-79. https://doi.org/ 10.21608/JBAAR.2017.125169 DOI: https://doi.org/10.21608/jbaar.2017.125169

Abou El-Magd, S. A., Sabik, L. M., & Shoukry, A. (2011). Pyrethroid toxic effects on some hormonal profile and biochemical markers among workers in pyrethroid insecticides company. Life Science Journal, 8(1), 311-22.

Arafa, A., Afify, M., & Samy, N. (2013). Evaluation of adverse health effects of pesticides exposure [biochemical and hormonal] among Egyptian farmers. Journal of Applied Sciences Research, 9(7), 4404-4409.

Boas, M., Feldt-Rasmussen, U., & Main, K. M. (2012). Thyroid effects of endocrine disrupting chemicals. Molecular and Cellular Endocrinology, 355(2), 240-248. https://doi.org/10.1016/j.mce.2011.09.005 DOI: https://doi.org/10.1016/j.mce.2011.09.005

Crofton K. M. (2008). Thyroid disrupting chemicals: mechanisms and mixtures. International Journal of Andrology, 31(2), 209-223. https://doi.org/10.1111/j.1365-2605.2007.00857.x DOI: https://doi.org/10.1111/j.1365-2605.2007.00857.x

Guyton, A. C., & Hall, J. E. (2006). Textbook of medical physiology (11th ed.). Saunders Elsevier, 938-941.

Gunstone, T., Cornelisse, T., Klein, K., Dubey, A., & Donley, N. (2021). Pesticides and soil invertebrates: A hazard assessment. Frontiers in Environmental Science, 122. https://doi.org/10.3389/fenvs.2021.643847 DOI: https://doi.org/10.3389/fenvs.2021.643847

Hernández, A. F., Bennekou, S. H., Hart, A., Mohimont, L., & Wolterink, G. (2020). Mechanisms underlying disruptive effects of pesticides on the thyroid function. Current Opinion in Toxicology, 19, 34-41. https://doi.org/10.1016/j.cotox.2019.10.003 DOI: https://doi.org/10.1016/j.cotox.2019.10.003

Iqbal, M. A., Roohi, N., & Qureshy, A. (2019). of Lahore, Pakistan. Punjab University Journal of Zool, 34(1), 01-7. http://dx.doi.org/10.17582/journal.pujz/2019.34.1.1.7 DOI: https://doi.org/10.17582/journal.pujz/2019.34.1.1.7

Ishibashi, H., Uchida, M., Yoshimoto, K., Imamura, Y., Yamamoto, R., Ikenaka, Y., Tominaga, N. (2018). Occurrence and seasonal variation of equine estrogens, equilin and equilenin, in the river water of Japan: Implication with endocrine-disrupting potentials to Japanese medaka (Oryzias latipes). Environmental Pollution, 239, 281-288. https://doi.org/10.1016/j.envpol.2018.04.029 DOI: https://doi.org/10.1016/j.envpol.2018.04.029

Khan, M. I., Shoukat, M. A., Cheema, S. A., Arif, H. N., Niazi, N. K., Azam, M., Bashir, S., Ashraf, I., & Qadri, R. (2020). Use, contamination and exposure of pesticides in Pakistan: A review. Pakistan Journal of Agricultural Sciences, 57(1). https://doi.org/10.21162/PAKJAS/20.7437

King, D. C. (2005). Thyroid hormones and equine metabolic syndrome. American Journal of Veterinary Research, 66(6), 1025-1031. DOI: https://doi.org/10.2460/ajvr.2005.66.1025

Kohn, M. C., Sewall, C. H., Lucier, G. W., & Portier, C. J. (1996). A mechanistic model of effects of dioxin on thyroid hormones in the rat. Toxicology and Applied Pharmacology, 136(1), 29-48. https://doi.org/10.1006/taap.1996.0004 DOI: https://doi.org/10.1006/taap.1996.0004

Koulouri, O., & Gurnell, M. (2013). How to interpret thyroid function tests. Clinical Medicine, 13(3), 282. https://doi.org/10.7861/clinmedicine.13-3-282 DOI: https://doi.org/10.7861/clinmedicine.13-3-282

Kumar, M., Sarma, D. K., Shubham, S., Kumawat, M., Verma, V., Prakash, A., & Tiwari, R. (2020). Environmental endocrine-disrupting chemical exposure: Role in non-communicable diseases. Frontiers in Public Health, 8, 549. https://doi.org/10.3389/fpubh.2020.553850 DOI: https://doi.org/10.3389/fpubh.2020.553850

Lerro, C. C., Freeman, L. E. B., DellaValle, C. T., Kibriya, M. G., Aschebrook-Kilfoy, B., Jasmine, F., Koutros, S., Parks, C. G., Sandler, D. P., Alavanja, M. C. R., Hofmann, J. N., & Ward, M. H. (2018). Occupational pesticide exposure and subclinical hypothyroidism among male pesticide applicators. Occupational and Environmental Medicine, 75(2), 79-89. http://dx.doi.org/10.1136/oemed-2017-104431 DOI: https://doi.org/10.1136/oemed-2017-104431

Mcclain R. M. (1992). Thyroid gland neoplasia: non-genotoxic mechanisms. Toxicology Letters, 64, 397-408. https://doi.org/10.1016/0378-4274(92)90213-4 DOI: https://doi.org/10.1016/0378-4274(92)90213-4

Mcleod, D.S., & Cooper, D.S. (2012). The incidence and prevalence of thyroid autoimmunity. Endocrine, 42(2), 252-265. https://doi.org/10.1007/s12020-012-9703-2 DOI: https://doi.org/10.1007/s12020-012-9703-2

Meeker, J. D., Altshul, L., & Hauser, R. (2007). Serum PCBs, p, p′-DDE and HCB predict thyroid hormone levels in men. Environmental research, 104(2), 296-304. https://doi.org/10.1016/j.envres.2006.11.007 DOI: https://doi.org/10.1016/j.envres.2006.11.007

Meikle A. W. (2004). The interrelationships between thyroid dysfunction and hypogonadism in men and boys. Thyroid, 14(3, Supplement 1), 17-25. https://doi.org/10.1089/105072504323024552 DOI: https://doi.org/10.1089/105072504323024552

Mnif, W., Hassine, A. I. H., Bouaziz, A., Bartegi, A., Thomas, O., & Roig, B. (2011). Effect of endocrine disruptor pesticides: A review. International Journal of Environmental Research and Public Health, 8(6), 2265-2303. https://doi.org/10.1089/105072504323024552 DOI: https://doi.org/10.3390/ijerph8062265

Mughal, B. B., Fini, J. B., & Demeneix, B. A. (2018). Thyroid-disrupting chemicals and brain development: an update. Endocrine Connections, 7(4), R160-R186. https://doi.org/10.1530/EC-18-0029 DOI: https://doi.org/10.1530/EC-18-0029

Pellegriti, G., Frasca, F., Regalbuto, C., Squatrito, S., & Vigneri, R. (2013). Worldwide increasing incidence of thyroid cancer: Update on epidemiology and risk factors. Journal of Cancer Epidemiology, 2013. https://doi.org/10.1155/2013/965212 DOI: https://doi.org/10.1155/2013/965212

Petrakis, D., Vassilopoulou, L., Mamoulakis, C., Psycharakis, C., Anifantaki, A., Sifakis, S., Docea, A. O., Tsiaoussis, J., Makrigiannakis, A., & Tsatsakis, A. M. (2017). Endocrine disruptors leading to obesity and related diseases. International Journal of Environmental Research and Public Health,14(10), 1282. https://doi.org/10.3390/ijerph14101282 DOI: https://doi.org/10.3390/ijerph14101282

Quraishi, R., Akbar, F., Karim, S., Ahmad, S., Rashid, W., & Ullah, S. (2015). Effects of pesticides on haematology, thyroid stimulating hormone (TSH) and tri-iodothyronine (T3) hormones of agricultural workers in Swat, Pakistan. Journal of Biology and Life Sciences, 6(1), 96. DOI: https://doi.org/10.5296/jbls.v6i1.6463

Rastrelli, G., Di Stasi, V., Inglese, F., Beccaria, M., Garuti, M., Di Costanzo, D., Pecoriello, A. (2021). Low testosterone levels predict clinical adverse outcomes in SARS‐CoV‐2 pneumonia patients. Andrology, 9(1), 88-98. https://doi.org/10.1111/andr.12821 DOI: https://doi.org/10.1111/andr.12821

Rathore, M., Bhatnagar, P., Mathur, D., & Saxena, G. N. (2002). Burden of organochlorine pesticides in blood and its effect on thyroid hormones in women. Science of the Total Environment, 295(1-3), 207-215. https://doi.org/10.1016/S0048-9697(02)00094-3 DOI: https://doi.org/10.1016/S0048-9697(02)00094-3

Requena, M., Lopez-Villen, A., Hernandez, A. F., Parron, T., Navarro, Á., & Alarcon, R. (2019). Environmental exposure to pesticides and risk of thyroid diseases. Toxicology Letters, 315, 55-63. https://doi.org/10.1016/j.toxlet.2019.08.017 DOI: https://doi.org/10.1016/j.toxlet.2019.08.017

Reza, S., Shaukat, A., Arain, T.M., Riaz, Q.S. and Mahmud, M., 2013. Expression of Osteopontin in Patients with Thyroid Dysfunction. Plos One., 8(2): 1-7. https://doi.org/10.1371/journal.pone.0056533 DOI: https://doi.org/10.1371/journal.pone.0056533

Roberts, J. R., & Reigart, J. R. (2013). Recognition and management of pesticide poisonings ed. 6th. United States Environmental Protection Agency.

Rousset, B., Dupuy, C., Miot, F., & Dumont, J. (2015). Thyroid hormone synthesis and secretion. In K. R. Feingold (Eds.) et. al., Endotext. MDText.com, Inc.

Sellitti, D. F., & Suzuki, K. (2014). Intrinsic regulation of thyroid function by thyroglobulin. Thyroid, 24(4), 625-638. https://doi.org/10.1089/thy.2013.0344 DOI: https://doi.org/10.1089/thy.2013.0344

Slimani, S., Boulakoud, M. S., & Abdennour, C. (2011). Pesticide exposure and reproductive biomarkers among male farmers from north-east Algeria. Annals of Biological Research, 2(2), 290-297.

Spassova, D., White, T., & Singh, A. K. (2000). Acute effects of acephate and methamidophos on acetylcholinesterase activity, endocrine system and amino acid concentrations in rats. Comparative Biochemistry and Physiology Part C: Pharmacology, Toxicology and Endocrinology, 126(1), 79-89. https://doi.org/10.1016/S0742-8413(00)00097-9 DOI: https://doi.org/10.1016/S0742-8413(00)00097-9

Surampudi, V., & Swerdloff, R. S. (2017). Hypogonadotropic and Hypergonadotropic Hypogonadism. In Testosterone (pp. 133-145). Springer, Cham. https://doi.org/10.1007/978-3-319-46086-4_6 DOI: https://doi.org/10.1007/978-3-319-46086-4_6